Back to Search Start Over

Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition

Authors :
Englmeier, Jana; https://orcid.org/0000-0002-0559-1618
Mitesser, Oliver
Benbow, M Eric
Hothorn, Torsten
von Hoermann, Christian
Benjamin, Caryl
Fricke, Ute
Ganuza, Cristina
Haensel, Maria
Redlich, Sarah
Riebl, Rebekka
Rojas Botero, Sandra
Rummler, Thomas
Steffan-Dewenter, Ingolf
Stengel, Elisa
Tobisch, Cynthia
Uhler, Johannes
Uphus, Lars
Zhang, Jie
Müller, Jörg
Englmeier, Jana; https://orcid.org/0000-0002-0559-1618
Mitesser, Oliver
Benbow, M Eric
Hothorn, Torsten
von Hoermann, Christian
Benjamin, Caryl
Fricke, Ute
Ganuza, Cristina
Haensel, Maria
Redlich, Sarah
Riebl, Rebekka
Rojas Botero, Sandra
Rummler, Thomas
Steffan-Dewenter, Ingolf
Stengel, Elisa
Tobisch, Cynthia
Uhler, Johannes
Uphus, Lars
Zhang, Jie
Müller, Jörg
Source :
Englmeier, Jana; Mitesser, Oliver; Benbow, M Eric; Hothorn, Torsten; von Hoermann, Christian; Benjamin, Caryl; Fricke, Ute; Ganuza, Cristina; Haensel, Maria; Redlich, Sarah; Riebl, Rebekka; Rojas Botero, Sandra; Rummler, Thomas; Steffan-Dewenter, Ingolf; Stengel, Elisa; Tobisch, Cynthia; Uhler, Johannes; Uphus, Lars; Zhang, Jie; Müller, Jörg (2023). Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems, 26(2):397-411.
Publication Year :
2023

Abstract

Land-use intensification and climate change threaten ecosystem functions. A fundamental, yet often overlooked, function is decomposition of necromass. The direct and indirect anthropogenic effects on decomposition, however, are poorly understood. We measured decomposition of two contrasting types of necromass, rat carrion and bison dung, on 179 study sites in Central Europe across an elevational climate gradient of 168–1122 m a.s.l. and within both local and regional land uses. Local land-use types included forest, grassland, arable fields, and settlements and were embedded in three regional land-use types (near-natural, agricultural, and urban). The effects of insects on decomposition were quantified by experimental exclusion, while controlling for removal by vertebrates. We used generalized additive mixed models to evaluate dung weight loss and carrion decay rate along elevation and across regional and local land-use types. We observed a unimodal relationship of dung decomposition with elevation, where greatest weight loss occurred between 600 and 700 m, but no effects of local temperature, land use, or insects. In contrast to dung, carrion decomposition was continuously faster with both increasing elevation and local temperature. Carrion reached the final decomposition stage six days earlier when insect access was allowed, and this did not depend on land-use effect. Our experiment identified different major drivers of decomposition on each necromass form. The results show that dung and carrion decomposition are rather robust to local and regional land use, but future climate change and decline of insects could alter decomposition processes and the self-regulation of ecosystems.

Details

Database :
OAIster
Journal :
Englmeier, Jana; Mitesser, Oliver; Benbow, M Eric; Hothorn, Torsten; von Hoermann, Christian; Benjamin, Caryl; Fricke, Ute; Ganuza, Cristina; Haensel, Maria; Redlich, Sarah; Riebl, Rebekka; Rojas Botero, Sandra; Rummler, Thomas; Steffan-Dewenter, Ingolf; Stengel, Elisa; Tobisch, Cynthia; Uhler, Johannes; Uphus, Lars; Zhang, Jie; Müller, Jörg (2023). Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems, 26(2):397-411.
Notes :
application/pdf, info:doi/10.5167/uzh-228165, English, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443050338
Document Type :
Electronic Resource