Back to Search Start Over

PET/CT radiomics for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibitors

Authors :
Gabryś, H S
Basler, Lucas; https://orcid.org/0000-0003-1259-5825
Burgermeister, Simon
Hogan, Sabrina; https://orcid.org/0000-0003-3994-8109
Ahmadsei, Maiwand
Pavic, Matea; https://orcid.org/0000-0002-3899-6152
Bogowicz, Marta; https://orcid.org/0000-0002-4747-5375
Vuong, Diem; https://orcid.org/0000-0001-7153-4219
Tanadini-Lang, Stephanie; https://orcid.org/0000-0002-4387-1522
Förster, Robert; https://orcid.org/0000-0002-7664-9207
Kudura, Ken
Huellner, Martin; https://orcid.org/0000-0002-4849-3292
Dummer, Reinhard; https://orcid.org/0000-0002-2279-6906
Levesque, M P
Guckenberger, Matthias; https://orcid.org/0000-0002-7146-9071
Gabryś, H S
Basler, Lucas; https://orcid.org/0000-0003-1259-5825
Burgermeister, Simon
Hogan, Sabrina; https://orcid.org/0000-0003-3994-8109
Ahmadsei, Maiwand
Pavic, Matea; https://orcid.org/0000-0002-3899-6152
Bogowicz, Marta; https://orcid.org/0000-0002-4747-5375
Vuong, Diem; https://orcid.org/0000-0001-7153-4219
Tanadini-Lang, Stephanie; https://orcid.org/0000-0002-4387-1522
Förster, Robert; https://orcid.org/0000-0002-7664-9207
Kudura, Ken
Huellner, Martin; https://orcid.org/0000-0002-4849-3292
Dummer, Reinhard; https://orcid.org/0000-0002-2279-6906
Levesque, M P
Guckenberger, Matthias; https://orcid.org/0000-0002-7146-9071
Source :
Gabryś, H S; Basler, Lucas; Burgermeister, Simon; Hogan, Sabrina; Ahmadsei, Maiwand; Pavic, Matea; Bogowicz, Marta; Vuong, Diem; Tanadini-Lang, Stephanie; Förster, Robert; Kudura, Ken; Huellner, Martin; Dummer, Reinhard; Levesque, M P; Guckenberger, Matthias (2022). PET/CT radiomics for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibitors. Frontiers in Oncology, 12:977822.
Publication Year :
2022

Abstract

PurposeThis study evaluated pretreatment 2[18F]fluoro-2-deoxy-D-glucose (FDG)-PET/CT-based radiomic signatures for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibition (ICI).Material and methodFifty-six consecutive metastatic melanoma patients treated with ICI and available imaging were included in the study and 330 metastatic lesions were individually, fully segmented on pre-treatment CT and FDG-PET imaging. Lesion hyperprogression (HPL) was defined as lesion progression according to RECIST 1.1 and doubling of tumor growth rate. Patient hyperprogression (PD-HPD) was defined as progressive disease (PD) according to RECIST 1.1 and presence of at least one HPL. Patient survival was evaluated with Kaplan-Meier curves. Mortality risk of PD-HPD status was assessed by estimation of hazard ratio (HR). Furthermore, we assessed with Fisher test and Mann-Whitney U test if demographic or treatment parameters were different between PD-HPD and the remaining patients. Pre-treatment PET/CT-based radiomic signatures were used to build models predicting HPL at three months after start of treatment. The models were internally validated with nested cross-validation. The performance metric was the area under receiver operating characteristic curve (AUC).ResultsPD-HPD patients constituted 57.1% of all PD patients. PD-HPD was negatively related to patient overall survival with HR=8.52 (95%CI 3.47-20.94). Sixty-nine lesions (20.9%) were identified as progressing at 3 months. Twenty-nine of these lesions were classified as hyperprogressive, thereby showing a HPL rate of 8.8%. CT-based, PET-based, and PET/CT-based models predicting HPL at three months after the start of treatment achieved testing AUC of 0.703 +/- 0.054, 0.516 +/- 0.061, and 0.704 +/- 0.070, respectively. The best performing models relied mostly on CT-based histogram features.ConclusionsFDG-PET/CT-based radiomic signatures yield potential for pretreatment prediction of lesi

Details

Database :
OAIster
Journal :
Gabryś, H S; Basler, Lucas; Burgermeister, Simon; Hogan, Sabrina; Ahmadsei, Maiwand; Pavic, Matea; Bogowicz, Marta; Vuong, Diem; Tanadini-Lang, Stephanie; Förster, Robert; Kudura, Ken; Huellner, Martin; Dummer, Reinhard; Levesque, M P; Guckenberger, Matthias (2022). PET/CT radiomics for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibitors. Frontiers in Oncology, 12:977822.
Notes :
application/pdf, info:doi/10.5167/uzh-224774, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443048192
Document Type :
Electronic Resource