Back to Search Start Over

SIPEC: the deep-learning Swiss knife for behavioral data analysis

Authors :
Marks, Markus; https://orcid.org/0000-0001-8016-1637
Qiuhan, Jin
Sturman, Oliver
von Ziegler, Lukas
Kollmorgen, Sepp
von der Behrens, Wolfger
Mante, Valerio
Bohacek, Johannes
Yanik, Mehmet Fatih
Marks, Markus; https://orcid.org/0000-0001-8016-1637
Qiuhan, Jin
Sturman, Oliver
von Ziegler, Lukas
Kollmorgen, Sepp
von der Behrens, Wolfger
Mante, Valerio
Bohacek, Johannes
Yanik, Mehmet Fatih
Source :
Marks, Markus; Qiuhan, Jin; Sturman, Oliver; von Ziegler, Lukas; Kollmorgen, Sepp; von der Behrens, Wolfger; Mante, Valerio; Bohacek, Johannes; Yanik, Mehmet Fatih (2020). SIPEC: the deep-learning Swiss knife for behavioral data analysis. bioRxiv 355115, Cold Spring Harbor Laboratory.
Publication Year :
2020

Abstract

Analysing the behavior of individuals or groups of animals in complex environments is an important, yet difficult computer vision task. Here we present a novel deep learning architecture for classifying animal behavior and demonstrate how this end-to-end approach can significantly outperform pose estimation-based approaches, whilst requiring no intervention after minimal training. Our behavioral classifier is embedded in a first-of-its-kind pipeline (SIPEC) which performs segmentation, identification, pose-estimation and classification of behavior all automatically. SIPEC successfully recognizes multiple behaviors of freely moving mice as well as socially interacting nonhuman primates in 3D, using data only from simple mono-vision cameras in home-cage setups.

Details

Database :
OAIster
Journal :
Marks, Markus; Qiuhan, Jin; Sturman, Oliver; von Ziegler, Lukas; Kollmorgen, Sepp; von der Behrens, Wolfger; Mante, Valerio; Bohacek, Johannes; Yanik, Mehmet Fatih (2020). SIPEC: the deep-learning Swiss knife for behavioral data analysis. bioRxiv 355115, Cold Spring Harbor Laboratory.
Notes :
application/pdf, info:doi/10.5167/uzh-200395, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1443036705
Document Type :
Electronic Resource