Back to Search Start Over

Characterization and Utilization of Interactions in Wet and Dry Cellulose Nanofibrillar Networks

Authors :
Sellman, Farhiya Alex
Sellman, Farhiya Alex
Publication Year :
2024

Abstract

Expanding our understanding of how cellulose fibers and fibrils interact with water and its effect on their inherent properties is needed to optimize their utilization in the making of novel bio-based materials, but also useful in more traditional products (pulp, paper, and packaging). The overall objective of the work in this thesis was to deepen the understanding of drying-induced structural changes and cellulose-water interactions using cellulosic model materials. Cellulose nanofibrils (CNFs) were employed as they present a distinct advantage with their defined geometry and controlled surface chemistry compared to macroscopic cellulose fibers. The first part considers the fundamental interactions of CNFs in contact with water and by water removal, and is devoted to identifying the molecular mechanisms behind the process known as hornification. This was done by studying the exposure of CNF sheets to different heat treatments to establish a connection between their reswelling properties, chemical and structural characteristics, and mechanical behavior. The findings indicate that hornification is governed by non-covalent interactions and that the diffusion of water back into a hornified CNF network is kinetically limited. Furthermore, the influence of fibril aspect ratio and chemical functionality on the mechanical properties of wet fibrillar networks was studied. Fibrils were prepared from fibers with different hemicellulose content. It was found that longer fibrils formed stiffer and more ductile materials, owing to a longer-range and more uniform distribution of stress transfer. Additionally, high aspect ratio fibrils form networks capable of holding larger amounts of water. It was also possible to elucidate the influence of aspect ratio on the network formation, where long and short fibrils form networks with different topologies. These results were integrated into a mechanical network model to present an improved elastoplastic description of the network propert<br />Att utvidga vår förståelse för hur cellulosafibrer och fibriller interagerar med vatten och dess effekt på deras inneboende egenskaper är nödvändigt för att optimera deras användning vid tillverkning av nya biobaserade material, men även i traditionella produkter (massa, papper och förpackningar). Det övergripande målet med arbetet i denna avhandling var att fördjupa förståelsen för strukturella förändringar orsakade av torkning och cellulosa-vatten interaktioner med hjälp av cellulosabaserade modellmaterial. Cellulosa nanofibriller (CNFs) användes då de har en fördel med sin definierade geometri och kontrollerade ytkemi i jämförelse med makroskopiska cellulosafibrer. Den första delen avhandlar de grundläggande interaktionerna mellan CNFs i kontakt med vatten och efter vattenborttagning, och ägnas åt att identifiera de molekylära mekanismerna bakom processen som kallas hornifiering. Detta gjordes genom att studera CNF-ark som utsatts för olika värmebehandlingar för att fastställa en koppling mellan deras svällningsegenskaper, kemiska och strukturella egenskaper samt mekaniska beteende. Resultaten indikerar att förhorning styrs av icke-kovalenta interaktioner och att diffusionen av vatten tillbaka in i ett förhornat CNF-nätverk är kinetiskt begränsad. Sedan studerades inflytandet av fibrillernas längd-bredd förhållande och kemisk funktionalitet på de mekaniska egenskaperna hos våta fibrillnätverk. Fibriller framställdes från fibrer med olika hemicellulosahalt. Resultaten visade att längre fibriller bildade styvare och mer töjbara material, tack vare en längre och mer jämn fördelning av belastningsöverföring. Dessutom bildar fibriller med högt längd-bredd förhållande nätverk som kan hålla större mängder vatten. Det var också möjligt att förklara inflytandet av längd-bredd förhållande på nätverksbildningen, där långa och korta fibriller bildar nätverk med olika topologier. Dessa resultat integrerades i en mekanisk nätverksmodell för att presentera en förbättrad elasto<br />QC 20240508Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2024-05-08

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1442903632
Document Type :
Electronic Resource