Back to Search Start Over

Discrete breathers in Klein–Gordon lattices. A deflation-based approach

Authors :
Universidad de Sevilla. Departamento de Física Aplicada I
Universidad de Sevilla. FQM280: Física no Lineal
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Ministerio de Ciencia e Innovación (MICIN). España
Martín-Vergara, Francisca
Cuevas-Maraver, Jesús
Farrell, Patrick
Villatoro Machuca, Francisco Román
Kevrekidis, Panayotis G.
Universidad de Sevilla. Departamento de Física Aplicada I
Universidad de Sevilla. FQM280: Física no Lineal
European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)
Ministerio de Ciencia e Innovación (MICIN). España
Martín-Vergara, Francisca
Cuevas-Maraver, Jesús
Farrell, Patrick
Villatoro Machuca, Francisco Román
Kevrekidis, Panayotis G.
Publication Year :
2023

Abstract

Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution’s energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1442720263
Document Type :
Electronic Resource