Back to Search
Start Over
Tailoring the draw solution chemistry in the integrated electro-Fenton and forward osmosis for enhancing emerging contaminants removal: Performance, DFT calculation and degradation pathway.
- Publication Year :
- 2023
-
Abstract
- Integrated electro-Fenton and forward osmosis is capable to simultaneously separate emerging contaminants and degrade accumulated ones. Thus, an understanding of how draw solution chemistry in forward osmosis influences electro-Fenton is vital for maximizing overall treatment. Therefore, this study aimed to determine the transport behavior of four trace organic contaminants (TrOCs) including Diuron, Atrazine, DEET and Sulfamethoxazole under several influencing factors. Alkalic NaCl severely deteriorated degradation because of the less generation of OH caused by the interfered iron redox cycle. pH-neutral NaCl resulted in the highest reverse salt flux, namely possible largest production of active chlorine, therefore leading to the highest degradation. Compared to NaCl, Na2SO4 presented a significant lower reverse diffusion due to the larger hydrated radius of SO42- than Cl-. Meanwhile, the large consumption of OH by SO42- decreased degradation. Dissolved organic matters in the secondary effluent acted as the scavenger for OH and resulted in a degradation decline. Water extraction resulted from forward osmosis deteriorated degradation kinetics of all compounds except Sulfamethoxazole. On the other hand, Density functional theory calculations and identified intermediates contributed to propose the possible degradation pathways for each TrOC in terms of understanding TrOCs removal mechanism.
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1439672572
- Document Type :
- Electronic Resource