Back to Search Start Over

Design of Solid Polycationic Electrolyte to Enable Durable Chloride-Ion Batteries.

Authors :
Yang, X
Fu, Z
Han, R
Lei, Y
Wang, S
Zhao, X
Meng, Y
Liu, H
Zhou, D
Aurbach, D
Wang, G
Yang, X
Fu, Z
Han, R
Lei, Y
Wang, S
Zhao, X
Meng, Y
Liu, H
Zhou, D
Aurbach, D
Wang, G
Publication Year :
2024

Abstract

The high energy density and cost-effectiveness of chloride-ion batteries (CIBs) make them promising alternatives to lithium-ion batteries. However, the development of CIBs is greatly restricted by the lack of compatible electrolytes to support cost-effective anodes. Herein, we present a rationally designed solid polycationic electrolyte (SPE) to enable room-temperature chloride-ion batteries utilizing aluminum (Al) metal as an anode. This SPE endows the CIB configuration with improved air stability and safety (i.e. free of flammability and liquid leakage). A high ionic conductivity (1.3×10-2 S cm-1 at 25 °C) has been achieved by the well-tailored solvation structure of the SPE. Meanwhile, the solid polycationic electrolyte ensures stable electrodes|electrolyte interfaces, which effectively inhibit the growth of dendrites on the Al anodes and degradation of the FeOCl cathodes. The Al|SPE|FeOCl chloride-ion batteries showcased a high discharge capacity around 250 mAh g-1 (based on the cathodes) and extended lifespan. Our electrolyte design opens a new avenue for developing low-cost chloride-ion batteries.

Details

Database :
OAIster
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439667545
Document Type :
Electronic Resource