Back to Search Start Over

PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production

Authors :
Srinivas, Upadhyayula S.
Tay, Norbert S. C.
Jaynes, Patrick
Anbuselvan, Akshaya
Ramachandran, Gokula K.
Wardyn, Joanna D.
Hoppe, Michal M.
Hoang, Phuong Mai
Peng, Yanfen
Lim, Sherlly
Lee, May Yin
Peethala, Praveen C.
An, Omer
Shendre, Akshay
Tan, Bryce W. Q.
Jemimah, Sherlyn
Lakshmanan, Manikandan
Hu, Longyu
Jakhar, Rekha
Sachaphibulkij, Karishma
Lim, Lina H. K.
Pervaiz, Shazib
Crasta, Karen
Yang, Henry
Tan, Patrick
Liang, Chao
Ho, Lena
Khanchandani, Vartika
Kappei, Denni
Yong, Wei Peng
Tan, David S. P.
Bordi, Matteo
Campello, Silvia
Tam, Wai Leong
Frezza, Christian
Jeyasekharan, Anand D.
Bordi, Matteo (ORCID:0000-0001-8207-8546)
Srinivas, Upadhyayula S.
Tay, Norbert S. C.
Jaynes, Patrick
Anbuselvan, Akshaya
Ramachandran, Gokula K.
Wardyn, Joanna D.
Hoppe, Michal M.
Hoang, Phuong Mai
Peng, Yanfen
Lim, Sherlly
Lee, May Yin
Peethala, Praveen C.
An, Omer
Shendre, Akshay
Tan, Bryce W. Q.
Jemimah, Sherlyn
Lakshmanan, Manikandan
Hu, Longyu
Jakhar, Rekha
Sachaphibulkij, Karishma
Lim, Lina H. K.
Pervaiz, Shazib
Crasta, Karen
Yang, Henry
Tan, Patrick
Liang, Chao
Ho, Lena
Khanchandani, Vartika
Kappei, Denni
Yong, Wei Peng
Tan, David S. P.
Bordi, Matteo
Campello, Silvia
Tam, Wai Leong
Frezza, Christian
Jeyasekharan, Anand D.
Bordi, Matteo (ORCID:0000-0001-8207-8546)
Publication Year :
2022

Abstract

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439664906
Document Type :
Electronic Resource