Back to Search Start Over

GenArchBench: A genomics benchmark suite for arm HPC processors

Authors :
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. ALBCOM - Algorísmia, Bioinformàtica, Complexitat i Mètodes Formals
López Villellas, Lorien
Langarita Benítez, Rubén
Badouh, Asaf
Soria Pardos, Víctor
Aguado Puig, Quim
López Paradís, Guillem
Doblas Font, Max
Setoain, Javier
Kim, Chulho
Ono, Makoto
Armejach Sanosa, Adrià
Marco Sola, Santiago
Alastruey Benedé, Jesús
Ibáñez Marín, Pablo
Moretó Planas, Miquel
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. ALBCOM - Algorísmia, Bioinformàtica, Complexitat i Mètodes Formals
López Villellas, Lorien
Langarita Benítez, Rubén
Badouh, Asaf
Soria Pardos, Víctor
Aguado Puig, Quim
López Paradís, Guillem
Doblas Font, Max
Setoain, Javier
Kim, Chulho
Ono, Makoto
Armejach Sanosa, Adrià
Marco Sola, Santiago
Alastruey Benedé, Jesús
Ibáñez Marín, Pablo
Moretó Planas, Miquel
Publication Year :
2024

Abstract

Arm usage has substantially grown in the High-Performance Computing (HPC) community. Japanese supercomputer Fugaku, powered by Arm-based A64FX processors, held the top position on the Top500 list between June 2020 and June 2022, currently sitting in the fourth position. The recently released 7th generation of Amazon EC2 instances for compute-intensive workloads (C7 g) is also powered by Arm Graviton3 processors. Projects like European Mont-Blanc and U.S. DOE/NNSA Astra are further examples of Arm irruption in HPC. In parallel, over the last decade, the rapid improvement of genomic sequencing technologies and the exponential growth of sequencing data has placed a significant bottleneck on the computational side. While most genomics applications have been thoroughly tested and optimized for x86 systems, just a few are prepared to perform efficiently on Arm machines. Moreover, these applications do not exploit the newly introduced Scalable Vector Extensions (SVE). This paper presents GenArchBench, the first genome analysis benchmark suite targeting Arm architectures. We have selected computationally demanding kernels from the most widely used tools in genome data analysis and ported them to Arm-based A64FX and Graviton3 processors. Overall, the GenArch benchmark suite comprises 13 multi-core kernels from critical stages of widely-used genome analysis pipelines, including base-calling, read mapping, variant calling, and genome assembly. Our benchmark suite includes different input data sets per kernel (small and large), each with a corresponding regression test to verify the correctness of each execution automatically. Moreover, the porting features the usage of the novel Arm SVE instructions, algorithmic and code optimizations, and the exploitation of Arm-optimized libraries. We present the optimizations implemented in each kernel and a detailed performance evaluation and comparison of their performance on four different HPC machines (i.e., A64FX, Graviton3, Intel Xeon<br />This work has been partially supported by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (contracts PID2019-107255GB-C21, PID2019-105660RB-C21, PID2022136454NB-C22, and TED2021-132634A-I00), by the Generalitat de Catalunya, Spain (contract 2021-SGR-763), by the Gobierno de Aragón (T58_23R research group), by the European Union NextGenerationEU/ PRTR, and by Lenovo BSC Contract-Framework Contract (2020).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
17 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439654329
Document Type :
Electronic Resource