Back to Search Start Over

Advective gas flow in bentonite: development and comparison of enhanced multi-phase numerical approaches

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. GGMM - Grup de Geotècnia i Mecànica de Materials
Tamayo Mas, Elena
Harrington, J. F.
Puig Damians, Ivan
Olivella Pastallé, Sebastià
Radeisen, Eike
Rutqvist, Jonny
Wang, Y.
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. GGMM - Grup de Geotècnia i Mecànica de Materials
Tamayo Mas, Elena
Harrington, J. F.
Puig Damians, Ivan
Olivella Pastallé, Sebastià
Radeisen, Eike
Rutqvist, Jonny
Wang, Y.
Publication Year :
2024

Abstract

Understanding the impact of repository gas, generated from degradation of waste and its interaction with the host rock, is essential when assessing the performance and safety function of long-term disposal systems for radioactive waste. Numerical models based on conventional multi-phase flow theory have historically been applied to predict the outcome and impact of gas flow on different repository components. However, they remain unable to describe the full complexity of the physical processes observed in water-saturated experiments (e.g., creation of dilatant pathways) and thus, the development of novel representations for their description is required when assessing fully saturated clay-based systems. This was the primary focus of Task A within the international cooperative project DECOVALEX-2019 (D-2019) and refinement of these approaches is the primary focus of this study (Task B in the current phase of DECOVALEX-2023). This paper summarises development of enhanced numerical representations of key processes and compares the performance of each model against high-quality laboratory test data. Experimental data reveals that gas percolation in water-saturated compacted bentonite is characterised by four key features: (i) a quiescence phase, followed by (ii) the gas breakthrough, which leads to a (iii) peak value, which is then followed by (iv) a negative decay. Three models based on the multiphase flow theory have been developed. These models can provide good initial values and reasonable responses for gas breakthrough (although some of them still predict a too-smooth response). Peak gas pressure values are in general reasonably well captured, although maximum radial stress differences are observed at 48 mm from the base of the sample. Here, numerical peak values of 12.8 MPa are predicted, whereas experimental values are about 11 MPa. These models are also capable of providing a reasonable representation of the negative pressure decay following peak pressure. Howev<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1439652959
Document Type :
Electronic Resource