Back to Search
Start Over
Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling
- Source :
- Zheng , C , Li , C , Tian , L , Shen , Z , Feng , G , Hou , W , Liu , F , Gao , Q & Wang , Y 2023 , ' Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling ' , European Journal of Agronomy , vol. 151 , 126994 .
- Publication Year :
- 2023
-
Abstract
- The mixture of controlled-release urea (CRU) and normal urea (MCU) applied as one-time basal fertilizer is a convenient and effective alternative to traditional split-nitrogen (N) fertilization, can ensure a sufficient late-season N supply to increase maize yield. However, the effects of MCU ratios on maize root development, post-silking growth, and grain-filling process remain poorly understood. In this study, 3-year field experiments were conducted on sandy and clay soils in Northeast China, to evaluate maize yield responses to different MCU ratios (from 0% to 60% at 15% intervals). Four key treatments, i.e., N omission (N0), MCU0%, MCU30%, and MCU60%, were then selected to investigate root traits, post-silking plant growth and N uptake, grain-filling parameters, and their relationships with grain yields. Across different soils and years, grain yields showed a parabolic curve with increasing MCU ratios, with the highest yields obtained in MCU30%. On average, MCU30% increased grain yield by 22.3% and 11.7% on sandy and clay soils, respectively, relative to MCU0%. The appropriate early-N supply in MCU30% promoted root growth by allocating more dry matter (DM) to roots, while increasing total root length by producing more and longer crown roots, as well as higher lateral root length. The well-developed roots in MCU30% increased post-silking plant N uptake under sufficient late-N supply, thereby delayed leaf senescence and improved DM production for grain-filling, ultimately increased kernel weight and grain yield. Compared to MCU30%, MCU60% showed similar growth and yield performances on clay soil. In contrast, MCU60% performed notably worse on sandy soil due to limited CRU-N release at early period under inherently lower soil moisture and fertility levels. Our measurements and correlation analysis support the conclusion that MCU30% effectively sustain leaf longevity and increase post-silking DM by optimizing root growth and morphology under an optimal N supply patte<br />The mixture of controlled-release urea (CRU) and normal urea (MCU) applied as one-time basal fertilizer is a convenient and effective alternative to traditional split-nitrogen (N) fertilization, can ensure a sufficient late-season N supply to increase maize yield. However, the effects of MCU ratios on maize root development, post-silking growth, and grain-filling process remain poorly understood. In this study, 3-year field experiments were conducted on sandy and clay soils in Northeast China, to evaluate maize yield responses to different MCU ratios (from 0% to 60% at 15% intervals). Four key treatments, i.e., N omission (N0), MCU0%, MCU30%, and MCU60%, were then selected to investigate root traits, post-silking plant growth and N uptake, grain-filling parameters, and their relationships with grain yields. Across different soils and years, grain yields showed a parabolic curve with increasing MCU ratios, with the highest yields obtained in MCU30%. On average, MCU30% increased grain yield by 22.3% and 11.7% on sandy and clay soils, respectively, relative to MCU0%. The appropriate early-N supply in MCU30% promoted root growth by allocating more dry matter (DM) to roots, while increasing total root length by producing more and longer crown roots, as well as higher lateral root length. The well-developed roots in MCU30% increased post-silking plant N uptake under sufficient late-N supply, thereby delayed leaf senescence and improved DM production for grain-filling, ultimately increased kernel weight and grain yield. Compared to MCU30%, MCU60% showed similar growth and yield performances on clay soil. In contrast, MCU60% performed notably worse on sandy soil due to limited CRU-N release at early period under inherently lower soil moisture and fertility levels. Our measurements and correlation analysis support the conclusion that MCU30% effectively sustain leaf longevity and increase post-silking DM by optimizing root growth and morphology under an optimal N supply patte
Details
- Database :
- OAIster
- Journal :
- Zheng , C , Li , C , Tian , L , Shen , Z , Feng , G , Hou , W , Liu , F , Gao , Q & Wang , Y 2023 , ' Mixture of controlled-release and normal urea to improve maize root development, post-silking plant growth, and grain filling ' , European Journal of Agronomy , vol. 151 , 126994 .
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1439548627
- Document Type :
- Electronic Resource