Back to Search
Start Over
Uncovering and modeling the hierarchical organization of urban heavy truck flows
- Publication Year :
- 2023
-
Abstract
- Knowledge of the hierarchical organization of urban heavy truck flows is important for understanding the structure of urban freight system and underlying interactions dynamics, providing insights to assess and develop freight policies. The complexity and dynamic nature of urban freight system pose significant challenges in comprehensively capturing structured arrangement of heavy truck movements. In this paper, we uncover the hierarchical organization of urban heavy truck flows by using complex network theory. We use large-scale heavy truck GPS data and urban freight location point-of-interest (POI) data to construct urban heavy truck mobility networks, and detect their community structure. The empirical results suggest different sets of locations are closely linked to each other to form multiple clusters. By integrating the categories of locations, we reveal the cluster-specific industry concentration and industry-specific location roles, informing evidence-based policy formulation. To capture the interaction dynamics of locations, we develop a spatial network growth model that considers the spatial agglomeration of industrial clusters and interaction pattern of locations. The model provides a mathematical tool to simulate the formation process of real-world networks for logistics planning and management.<br />Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br />Transport and Planning<br />Transport and Logistics
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1434557945
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1016.j.tre.2023.103318