Back to Search Start Over

Neural Stress Fields for Reduced-order Elastoplasticity and Fracture

Authors :
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Zong, Zeshun
Li, Xuan
Li, Minchen
Chiaramonte, Maurizio M.
Matusik, Wojciech
Grinspun, Eitan
Carlberg, Kevin
Jiang, Chenfanfu
Chen, Peter Yichen
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Zong, Zeshun
Li, Xuan
Li, Minchen
Chiaramonte, Maurizio M.
Matusik, Wojciech
Grinspun, Eitan
Carlberg, Kevin
Jiang, Chenfanfu
Chen, Peter Yichen
Source :
Association for Computing Machinery
Publication Year :
2024

Abstract

We propose a hybrid neural network and physics framework for reduced-order modeling of elastoplasticity and fracture. State-of-the-art scientific computing models like the Material Point Method (MPM) faithfully simulate large-deformation elastoplasticity and fracture mechanics. However, their long runtime and large memory consumption render them unsuitable for applications constrained by computation time and memory usage, e.g., virtual reality. To overcome these barriers, we propose a reduced-order framework. Our key innovation is training a low-dimensional manifold for the Kirchhoff stress field via an implicit neural representation. This low-dimensional neural stress field (NSF) enables efficient evaluations of stress values and, correspondingly, internal forces at arbitrary spatial locations. In addition, we also train neural deformation and affine fields to build low-dimensional manifolds for the deformation and affine momentum fields. These neural stress, deformation, and affine fields share the same low-dimensional latent space, which uniquely embeds the high-dimensional simulation state. After training, we run new simulations by evolving in this single latent space, which drastically reduces the computation time and memory consumption. Our general continuum-mechanics-based reduced-order framework is applicable to any phenomena governed by the elastodynamics equation. To showcase the versatility of our framework, we simulate a wide range of material behaviors, including elastica, sand, metal, non-Newtonian fluids, fracture, contact, and collision. We demonstrate dimension reduction by up to 100,000 × and time savings by up to 10 ×.

Details

Database :
OAIster
Journal :
Association for Computing Machinery
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1434011986
Document Type :
Electronic Resource