Back to Search
Start Over
A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission.
- Source :
- Nature structural biology; vol 27, iss 6
- Publication Year :
- 2020
-
Abstract
- The ESCRT complexes drive membrane scission in HIV-1 release, autophagosome closure, multivesicular body biogenesis, cytokinesis, and other cell processes. ESCRT-I is the most upstream complex and bridges the system to HIV-1 Gag in virus release. The crystal structure of the headpiece of human ESCRT-I comprising TSG101-VPS28-VPS37B-MVB12A was determined, revealing an ESCRT-I helical assembly with a 12-molecule repeat. Electron microscopy confirmed that ESCRT-I subcomplexes form helical filaments in solution. Mutation of VPS28 helical interface residues blocks filament formation in vitro and autophagosome closure and HIV-1 release in human cells. Coarse-grained (CG) simulations of ESCRT assembly at HIV-1 budding sites suggest that formation of a 12-membered ring of ESCRT-I molecules is a geometry-dependent checkpoint during late stages of Gag assembly and HIV-1 budding and templates ESCRT-III assembly for membrane scission. These data show that ESCRT-I is not merely a bridging adaptor; it has an essential scaffolding and mechanical role in its own right.
Details
- Database :
- OAIster
- Journal :
- Nature structural biology; vol 27, iss 6
- Notes :
- application/pdf, Nature structural biology vol 27, iss 6
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1432082253
- Document Type :
- Electronic Resource