Back to Search Start Over

Exotic electronic properties of 2D nanosheets isolated from liquid phase exfoliated phyllosilicate minerals

Authors :
University of Sussex
Saudi Arabian Cultural Bureau
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Gobierno de Aragón
Diputación General de Aragón
European Commission
Wei, Cencen
Roy, Abhijit
Tripathi, Manoj
Aljarid, Adel K.A.
Salvage, Jonathan P.
Roe, S. Mark
Arenal, Raúl
Boland, Conor S.
University of Sussex
Saudi Arabian Cultural Bureau
Ministerio de Ciencia, Innovación y Universidades (España)
Agencia Estatal de Investigación (España)
Gobierno de Aragón
Diputación General de Aragón
European Commission
Wei, Cencen
Roy, Abhijit
Tripathi, Manoj
Aljarid, Adel K.A.
Salvage, Jonathan P.
Roe, S. Mark
Arenal, Raúl
Boland, Conor S.
Publication Year :
2023

Abstract

Spectrally inactive, electrically insulating, and chemically inert are adjectives broadly used to describe phyllosilicate minerals like mica and chlorite. Here, the above is disproved by demonstrating aqueous suspensions of liquid exfoliated nanosheets from five bulk mica types and chlorite schist. Nanosheet quality is confirmed via transmission electron and X-ray photoelectron spectroscopies, as well as electron diffraction. Through Raman spectroscopy, a previously unreported size- and layer-dependent spectral fingerprint is observed. When analyzing the high-yield suspensions (≈1 mg mL−1) through UV–vis spectroscopy, all phyllosilicates present bandgap (Eg) narrowing from ≈7 eV in the bulk to ≈4 eV for monolayers. Unusually, the bandgap is inversely proportional to the areal size (A) of the nanosheets, measured via atomic force microscopy. Due to an unrecorded quantum confinement effect, nanosheet electronic properties scale toward semiconducting behavior (bandgap ≈3 eV) as nanosheet area increases. Furthermore, modeling X-ray diffraction spectra shows that the root cause of the initial bandgap narrowing is lattice relaxation. Finally, with their broad range of isomorphically substituted ions, phyllosilicate nanosheets show remarkable catalytic properties for hydrogen production.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1431959034
Document Type :
Electronic Resource