Back to Search Start Over

Hill–Chao numbers allow decomposing gamma multifunctionality into alpha and beta components

Authors :
Chao, Anne
Chiu, Chun Huo
Hu, Kai Hsiang
van der Plas, Fons
Cadotte, Marc W.
Mitesser, Oliver
Thorn, Simon
Mori, Akira S.
Scherer-Lorenzen, Michael
Eisenhauer, Nico
Bässler, Claus
Delory, Benjamin M.
Feldhaar, Heike
Fichtner, Andreas
Hothorn, Torsten
Peters, Marcell K.
Pierick, Kerstin
von Oheimb, Goddert
Müller, Jörg
Chao, Anne
Chiu, Chun Huo
Hu, Kai Hsiang
van der Plas, Fons
Cadotte, Marc W.
Mitesser, Oliver
Thorn, Simon
Mori, Akira S.
Scherer-Lorenzen, Michael
Eisenhauer, Nico
Bässler, Claus
Delory, Benjamin M.
Feldhaar, Heike
Fichtner, Andreas
Hothorn, Torsten
Peters, Marcell K.
Pierick, Kerstin
von Oheimb, Goddert
Müller, Jörg
Source :
ISSN: 1461-023X
Publication Year :
2024

Abstract

Biodiversity–ecosystem functioning (BEF) research has provided strong evidence and mechanistic underpinnings to support positive effects of biodiversity on ecosystem functioning, from single to multiple functions. This research has provided knowledge gained mainly at the local alpha scale (i.e. within ecosystems), but the increasing homogenization of landscapes in the Anthropocene has raised the potential that declining biodiversity at the beta (across ecosystems) and gamma scales is likely to also impact ecosystem functioning. Drawing on biodiversity theory, we propose a new statistical framework based on Hill–Chao numbers. The framework allows decomposition of multifunctionality at gamma scales into alpha and beta components, a critical but hitherto missing tool in BEF research; it also allows weighting of individual ecosystem functions. Through the proposed decomposition, new BEF results for beta and gamma scales are discovered. Our novel approach is applicable across ecosystems and connects local- and landscape-scale BEF assessments from experiments to natural settings.

Details

Database :
OAIster
Journal :
ISSN: 1461-023X
Notes :
application/pdf, Ecology Letters 27 (2024) 1, ISSN: 1461-023X, ISSN: 1461-023X, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1430715559
Document Type :
Electronic Resource