Back to Search Start Over

microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus

Authors :
Jimenez-Mateos, Eva M.
Sanz-Rodriguez, Amaya
Concannon, Caoimhin
Reschke, Cristina R.
Mooney, Claire M.
Mooney, Catherine
Lugara, Eleonora
Morgan, James
Langa, Elena
Jimenez-Pacheco, Alba
Silva, Luiz Fernando Almeida
Mesuret, Guillaume
Boison, Detlev
Letavic, Michael
Bhattacharya, Anindya
Henshall, David C.
Engel, Tobias
Díaz Hernández, Miguel
Rodríguez Artalejo, Antonio
Miras Portugal, María Teresa
Olivos Ore, Luis Alcides
Arribas Blázquez, Marina
Jimenez-Mateos, Eva M.
Sanz-Rodriguez, Amaya
Concannon, Caoimhin
Reschke, Cristina R.
Mooney, Claire M.
Mooney, Catherine
Lugara, Eleonora
Morgan, James
Langa, Elena
Jimenez-Pacheco, Alba
Silva, Luiz Fernando Almeida
Mesuret, Guillaume
Boison, Detlev
Letavic, Michael
Bhattacharya, Anindya
Henshall, David C.
Engel, Tobias
Díaz Hernández, Miguel
Rodríguez Artalejo, Antonio
Miras Portugal, María Teresa
Olivos Ore, Luis Alcides
Arribas Blázquez, Marina
Publication Year :
2024

Abstract

The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7Rgated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7-/- mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain.<br />MICINN<br />Comunidad de Madrid<br />Health Research Board<br />Science Foundation Ireland<br />Unión Europea<br />UCM-Banco Santander<br />Ion Channel Initiative<br />Depto. de Farmacología y Toxicología<br />Fac. de Veterinaria<br />TRUE<br />pub

Details

Database :
OAIster
Notes :
application/pdf, 2045-2322, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1429623889
Document Type :
Electronic Resource