Back to Search Start Over

In Situ Formation of a LiBO2 Coating Layer and Spinel Phase for Ni-Rich Cathode Materials from a Boric Acid-Etched Precursor

Authors :
Guo, Ziyin
Shi, Xiaotang
Cao, Longhao
Zhang, Jing
Zhang, Xiaosong
Yao, Jiang
Cheng, Ya-Jun
Xia, Yonggao
Guo, Ziyin
Shi, Xiaotang
Cao, Longhao
Zhang, Jing
Zhang, Xiaosong
Yao, Jiang
Cheng, Ya-Jun
Xia, Yonggao
Publication Year :
2024

Abstract

Ni-rich cathode materials exhibit superior energy densities and have attracted interest among both research and industrial fields; whereas, their practical application is hindered by the intrinsic drawbacks brought by the high nickel content such as structural instability and rapid capacity fading. Herein, in situ formation of a LiBO2 coating layer and spinel phase layer is achieved on the surface of a Ni-rich cathode material via a boric acid etching method at the precursor state. The spinel phase is considered to have a 3D lithium diffusion tunnel and hence faster diffusion kinetics. Moreover, the LiBO2 layer possesses excellent (electro)-chemical inertness and can suppress electrolyte decomposition, resulting in a more inorganic and stable cathode-electrolyte interface. The surface reconstructed sample exhibits better cyclic stability (93.3% capacity retention vs 85.3% for the pristine sample at 1 C for 100 cycles) and rate performance. The superiority of this surface reconstruction is demonstrated by a series of electrochemical techniques and characterization methods including high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), post-mortem X-ray photoelectron spectroscopy (XPS) analysis, and density functional theory (DFT) calculations.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1428125014
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1021.acsami.3c14342