Back to Search Start Over

Metabolite Profiling of Drugs using Mass Spectrometry : Identification of analytical targets for doping control and improvements of the metabolite search process

Authors :
Nilsson Broberg, Malin
Nilsson Broberg, Malin
Publication Year :
2024

Abstract

Doping is defined as the use of prohibited substances or methods by the World Anti-Doping Agency and the aim with doping control analysis is to detect the use of these illicit substances or methods. Substances that are prohibited in human or equine sports have either a positive or negative impact on the performance. Since administered drugs generally are metabolized to a varying degree and thereby not only excreted in their original form, their metabolite profiles are of high interest because drug metabolites may be present in the body for a longer time than the administered drug itself. Thereby detection of metabolites can improve the window of detection. Unfortunately, the metabolite profiles of non-approved drugs that are mainly available on the Internet, such as Selective Androgen Receptor Modulators (SARMs) are often unknown. This thesis consists of four papers that all encompass drug metabolite profiling either in vivo, in vitro or in a combination, utilizing separation with liquid chromatography and detection with high resolution mass spectrometry. In paper I and II, the equine in vivo metabolite profiles of the two SARMs ACP-105 and LGD-3303 were investigated and the results showed that using drug metabolites as analytical targets can prolong the detection time. For ACP-105, the in vivo metabolite profile was compared with different incubation models such as liver microsomes, S9 fractions and the fungus Cunninghamella elegans. The in vivo and in vitro metabolite profiles showed an interesting overlap for several metabolites, demonstrating the importance and usefulness for in vitro methods in doping control, especially since microsome incubates are allowed as reference material. An optimization of microsome incubation conditions utilizing experimental design was presented in paper III and IV, showing that the optimized conditions greatly impacted the yield of drug metabolites, but also that the optimal conditions are substance dependent. In paper III, a mult

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1428103737
Document Type :
Electronic Resource