Back to Search Start Over

Risk Factors of Mortality in Hospitalized Patients With COVID-19 Applying a Machine Learning Algorithm

Authors :
Universidade de Santiago de Compostela. Departamento de Bioquímica e Bioloxía Molecular
Universidade de Santiago de Compostela. Departamento de Estatística, Análise Matemática e Optimización
Universidade de Santiago de Compostela. Departamento de Psiquiatría, Radioloxía, Saúde Pública, Enfermaría e Medicina
Nieto Codesido, Irene
Diego, Carmen
Hammouri, Z.
Ginzo Villamayor, María José
Salgado, Francisco Javier
Martín Carreira, José
Rábade, Carlos
Barbeito, Gema
González Perez, Miguel Ángel
Gonzalez-Barcala, Francisco-Javier
Calvo Álvarez, Uxío
Mallah, Narmeen
Universidade de Santiago de Compostela. Departamento de Bioquímica e Bioloxía Molecular
Universidade de Santiago de Compostela. Departamento de Estatística, Análise Matemática e Optimización
Universidade de Santiago de Compostela. Departamento de Psiquiatría, Radioloxía, Saúde Pública, Enfermaría e Medicina
Nieto Codesido, Irene
Diego, Carmen
Hammouri, Z.
Ginzo Villamayor, María José
Salgado, Francisco Javier
Martín Carreira, José
Rábade, Carlos
Barbeito, Gema
González Perez, Miguel Ángel
Gonzalez-Barcala, Francisco-Javier
Calvo Álvarez, Uxío
Mallah, Narmeen
Publication Year :
2022

Abstract

Introduction Risk stratification of patients with COVID-19 can be fundamental to support clinical decision-making and optimize resources. The objective of our study is to identify among the routinely tested clinical and analytical parameters those that would allow us to determine patients with the highest risk of dying from COVID-19. Material and methods We carried out a retrospective cohort multicentric study by consecutively, including hospitalized patients with COVID-19 admitted in any of the 11 hospitals in the healthcare network of HM Hospitals-Spain. We collected the clinical, demographic, analytical, and radiological data from the patient's medical records. To assess each of the biomarkers’ predictive impact and measure the statistical significance of the variables involved in the analysis, we applied a random forest with a permutation method. We used the similarity measure induced by a previously classification model and adjusted the k-groups clustering algorithm based on the energy distance to stratify patients into a high and low-risk group. Finally, we adjusted two optimal classification trees to have a schematic representation of the cut-off points. Results We included 1246 patients (average age of 65.36 years, 62% males). During the study one hundred sixty-eight patients (13%) died. High values of age, D-Dimer, White Blood Cell, Na, CRP, and creatinine represent the factors that identify high-risk patients who would die. Conclusions Age seems to be the primary predictor of mortality in patients with SARS-CoV-2 infection, while the impact of acute phase reactants and blood cellularity is also highly relevant.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1428034846
Document Type :
Electronic Resource