Back to Search
Start Over
Data Compression Versus Signal Fidelity Tradeoff in Wired-OR Analog-to-Digital Compressive Arrays for Neural Recording
- Publication Year :
- 2023
-
Abstract
- Future high-density and high channel count neural interfaces that enable simultaneous recording of tens of thousands of neurons will provide a gateway to study, restore and augment neural functions. However, building such technology within the bit-rate limit and power budget of a fully implantable device is challenging. The wired-OR compressive readout architecture addresses the data deluge challenge of a high channel count neural interface using lossy compression at the analog-to-digital interface. In this article, we assess the suitability of wired-OR for several steps that are important for neuroengineering, including spike detection, spike assignment and waveform estimation. For various wiring configurations of wired-OR and assumptions about the quality of the underlying signal, we characterize the trade-off between compression ratio and task-specific signal fidelity metrics. Using data from 18 large-scale microelectrode array recordings in macaque retina ex vivo, we find that for an event SNR of 7-10, wired-OR correctly detects and assigns at least 80% of the spikes with at least 50× compression. The wired-OR approach also robustly encodes action potential waveform information, enabling downstream processing such as cell-type classification. Finally, we show that by applying an LZ77-based lossless compressor (gzip) to the output of the wired-OR architecture, 1000× compression can be achieved over the baseline recordings.<br />Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br />Bio-Electronics
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1427490750
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1109.TBCAS.2023.3292058