Back to Search Start Over

Artificial intelligence for natural product drug discovery

Authors :
Mullowney, Michael W.
Duncan, Katherine R.
Elsayed, Somayah S.
Garg, Neha
van der Hooft, Justin J.J.
Martin, Nathaniel I.
Meijer, David
Terlouw, Barbara R.
Biermann, Friederike
Blin, Kai
Durairaj, Janani
Gorostiola González, Marina
Helfrich, Eric J.N.
Huber, Florian
Leopold-Messer, Stefan
Rajan, Kohulan
de Rond, Tristan
van Santen, Jeffrey A.
Sorokina, Maria
Balunas, Marcy J.
Beniddir, Mehdi A.
van Bergeijk, Doris A.
Carroll, Laura M.
Clark, Chase M.
Clevert, Djork Arné
Dejong, Chris A.
Du, Chao
Ferrinho, Scarlet
Grisoni, Francesca
Hofstetter, Albert
Jespers, Willem
Kalinina, Olga V.
Kautsar, Satria A.
Kim, Hyunwoo
Leao, Tiago F.
Masschelein, Joleen
Rees, Evan R.
Reher, Raphael
Reker, Daniel
Schwaller, Philippe
Segler, Marwin
Skinnider, Michael A.
Walker, Allison S.
Willighagen, Egon L.
Zdrazil, Barbara
Ziemert, Nadine
Goss, Rebecca J.M.
Guyomard, Pierre
Volkamer, Andrea
Gerwick, William H.
Et al.
van Westen, Gerard J.P.
Mullowney, Michael W.
Duncan, Katherine R.
Elsayed, Somayah S.
Garg, Neha
van der Hooft, Justin J.J.
Martin, Nathaniel I.
Meijer, David
Terlouw, Barbara R.
Biermann, Friederike
Blin, Kai
Durairaj, Janani
Gorostiola González, Marina
Helfrich, Eric J.N.
Huber, Florian
Leopold-Messer, Stefan
Rajan, Kohulan
de Rond, Tristan
van Santen, Jeffrey A.
Sorokina, Maria
Balunas, Marcy J.
Beniddir, Mehdi A.
van Bergeijk, Doris A.
Carroll, Laura M.
Clark, Chase M.
Clevert, Djork Arné
Dejong, Chris A.
Du, Chao
Ferrinho, Scarlet
Grisoni, Francesca
Hofstetter, Albert
Jespers, Willem
Kalinina, Olga V.
Kautsar, Satria A.
Kim, Hyunwoo
Leao, Tiago F.
Masschelein, Joleen
Rees, Evan R.
Reher, Raphael
Reker, Daniel
Schwaller, Philippe
Segler, Marwin
Skinnider, Michael A.
Walker, Allison S.
Willighagen, Egon L.
Zdrazil, Barbara
Ziemert, Nadine
Goss, Rebecca J.M.
Guyomard, Pierre
Volkamer, Andrea
Gerwick, William H.
Et al.
van Westen, Gerard J.P.
Source :
Nature Reviews Drug Discovery vol.22 (2023) nr.11 p.895–916 [ISSN 1474-1776]
Publication Year :
2023

Abstract

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.

Details

Database :
OAIster
Journal :
Nature Reviews Drug Discovery vol.22 (2023) nr.11 p.895–916 [ISSN 1474-1776]
Notes :
DOI: 10.1038/s41573-023-00774-7, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427435824
Document Type :
Electronic Resource