Back to Search Start Over

Antibacterial and Antibiofouling Activities of Carbon Polymerized Dots/Polyurethane and C60/Polyurethane Composite Films

Authors :
Marković, Zoran M.
Budimir Filimonović, Milica
Milivojević, Dušan
Kovač, Janez
Todorović-Marković, Biljana
Marković, Zoran M.
Budimir Filimonović, Milica
Milivojević, Dušan
Kovač, Janez
Todorović-Marković, Biljana
Source :
Journal of Functional Biomaterials
Publication Year :
2024

Abstract

The cost of treatment of antibiotic-resistant pathogens is on the level of tens of billions of dollars at the moment. It is of special interest to reduce or solve this problem using antimicrobial coatings, especially in hospitals or other healthcare facilities. The bacteria can transfer from medical staff or contaminated surfaces to patients. In this paper, we focused our attention on the antibacterial and antibiofouling activities of two types of photodynamic polyurethane composite films doped with carbon polymerized dots (CPDs) and fullerene C60. Detailed atomic force, electrostatic force and viscoelastic microscopy revealed topology, nanoelectrical and nanomechanical properties of used fillers and composites. A relationship between the electronic structure of the nanocarbon fillers and the antibacterial and antibiofouling activities of the composites was established. Thorough spectroscopic analysis of reactive oxygen species (ROS) generation was conducted for both composite films, and it was found that both of them were potent antibacterial agents against nosocomial bacteria (Klebsiela pneumoniae, Proteus mirabilis, Salmonela enterica, Enterococcus faecalis, Enterococcus epidermis and Pseudomonas aeruginosa). Antibiofouling testing of composite films indicated that the CPDs/PU composite films eradicated almost completely the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus and about 50% of Escherichia coli biofilms.

Details

Database :
OAIster
Journal :
Journal of Functional Biomaterials
Notes :
Journal of Functional Biomaterials
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427433714
Document Type :
Electronic Resource