Back to Search Start Over

Metrics for code smells of ML pipelines

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering
Costal Costa, Dolors
Gómez Seoane, Cristina
Martínez Fernández, Silverio Juan
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
Universitat Politècnica de Catalunya. inSSIDE - integrated Software, Services, Information and Data Engineering
Costal Costa, Dolors
Gómez Seoane, Cristina
Martínez Fernández, Silverio Juan
Publication Year :
2023

Abstract

ML pipelines, as key components of ML systems, shall be developed following quality assurance techniques. Unfortunately, it is often the case in which they present maintainability issues, due to the experimentatal nature of data collection and ML model construction. To address this problem, this work in progress proposes initial metrics to measure the presence of code smells in ML pipelines. These metrics reflect good software engineering practices for code quality of ML pipelines.<br />This work was supported by the “Spanish Ministerio de Ciencia e Innovación” under project / funding scheme PID2020-117191RB-I00 / AEI/10.13039/501100011033.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
7 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427144775
Document Type :
Electronic Resource