Back to Search Start Over

Worst case execution time and power estimation of multicore and GPU software: a pedestrian detection use case

Authors :
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Barcelona Supercomputing Center
Rodríguez Ferrández, Iván
Jover Álvarez, Álvaro
Trompouki, Matina Maria
Kosmidis, Leonidas
Cazorla Almeida, Francisco Javier
Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
Barcelona Supercomputing Center
Rodríguez Ferrández, Iván
Jover Álvarez, Álvaro
Trompouki, Matina Maria
Kosmidis, Leonidas
Cazorla Almeida, Francisco Javier
Publication Year :
2023

Abstract

Worst Case Execution Time estimation of software running on parallel platforms is a challenging task, due to resource interference of other tasks and the complexity of the underlying CPU and GPU hardware architectures. Similarly, the increased complexity of the hardware, challenges the estimation of worst case power consumption. In this paper, we employ Measurement Based Probabilistic Timing Analysis (MBPTA), which is capable of managing complex architectures such as multicores. We enable its use by software randomisation, which we show for the first time that is also possible on GPUs. We demonstrate our method on a pedestrian detection use case on an embedded multicore and GPU platform for the automotive domain, the NVIDIA Xavier. Moreover, we extend our measurement based probabilistic method in order to predict the worst case power consumption of the software on the same platform.<br />This work was funded by the Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación (PID2019-107255GB- C21/AEI/10.13039/501100011033 and IJC-2020-045931-I), the European Commission’s Horizon 2020 programme under the UP2DATE project (grant agreement 871465), an ERC grant (No. 772773) and the HiPEAC Network of Excellence<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
7 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427142901
Document Type :
Electronic Resource