Back to Search Start Over

Explaining the behaviour of reinforcement learning agents in a multi-agent cooperative environment using policy graphs

Authors :
Universitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. IDEAI-UPC - Intelligent Data sciEnce and Artificial Intelligence Research Group
Domènech Vila, Marc
Gnatyshak, Dmitry
Tormos Llorente, Adrián
Giménez Ábalos, Víctor
Álvarez Napagao, Sergio
Universitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya. IDEAI-UPC - Intelligent Data sciEnce and Artificial Intelligence Research Group
Domènech Vila, Marc
Gnatyshak, Dmitry
Tormos Llorente, Adrián
Giménez Ábalos, Víctor
Álvarez Napagao, Sergio
Publication Year :
2024

Abstract

The adoption of algorithms based on Artificial Intelligence (AI) has been rapidly increasing during the last few years. However, some aspects of AI techniques are under heavy scrutiny. For instance, in many use cases, it is not clear whether the decisions of an algorithm are well informed and conforming to human understanding. Having ways to address these concerns is crucial in many domains, especially whenever humans and intelligent (physical or virtual) agents must cooperate in a shared environment. In this paper, we apply an explainability method based on the creation of a Policy Graph (PG) based on discrete predicates that represent and explain a trained agent’s behaviour in a multi-agent cooperative environment. We show that from these policy graphs, policies for surrogate interpretable agents can be automatically generated. These policies can be used to measure the reliability of the explanations enabled by the PGs through a fair behavioural comparison between the original opaque agent and the surrogate one. The contributions of this paper represent the first use case of policy graphs in the context of explaining agent behaviour in cooperative multi-agent scenarios and present experimental results that sets this kind of scenario apart from previous implementations in single-agent scenarios: when requiring cooperative behaviour, predicates that allow representing observations about the other agents are crucial to replicate the opaque agent’s behaviour and increase the reliability of explanations.<br />This work has been partially supported by the H2020 knowlEdge European project (Grant agreement ID: 957331).<br />Peer Reviewed<br />Postprint (published version)

Details

Database :
OAIster
Notes :
19 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1427122290
Document Type :
Electronic Resource