Back to Search Start Over

Umělé uspořádané soubory magnetických nanostruktur

Authors :
Šikola, Tomáš
Mougin, Alexandra
Carrey, Julian
Schánilec, Vojtěch
Šikola, Tomáš
Mougin, Alexandra
Carrey, Julian
Schánilec, Vojtěch

Abstract

Uměle vytvořená dvourozměrná pole interagujících nanomagnetů jsou mocným hřištěm pro zkoumání fyziky mřížkových spinových modelů. Tyto umělé spinové systémy byly navrženy tak, aby napodobovaly chování frustrovaných pyrochlorových krystalů. Zdokonalení nanofabrikačních technik nám umožňuje vyrobit jakýkoli požadovaný umělý systém v laboratorně kontrolovaném prostředí. Díky tomu lze vyrábět umělé simulátory hmoty a používat je k pokročilejšímu studiu požadovaných jevů. Výhodou použití nanomagnetických objektů jako stavebních kamenů umělých mřížek je, že malé magnetické struktury lze efektivně považovat za obří klasické Isingovy spiny. Proto transformují problém frustrovaných spinů v pyrochlorových krystalech do takových rozměrů, aby bylo možné systém studovat pomocí zobrazovacích technik reálného prostoru. Pomocí zobrazovacích technik, jako je mikroskopie magnetických sil, lze uspořádání každého Isingova makrospinu vizualizovat v reálném prostoru. To nám umožní podívat se nejen na globální vlastnost systému jako celku, ale také na to, jak jsou realizovány lokální interakce. Schopnost vyrobit umělé systémy zachycující požadovaný fyzikální jev a porovnat jej s~reálným přírodním protějškem ukazuje naše porozumění problému. Může také nabídnout chybějící část informací. Existují vlastnosti systémů, které nejsou zakódovány v teoretických Hamiltoniánech popisujících systémy, ale přesto jsou systému vlastní. Takové vlastnosti se zdánlivě objevují odnikud a díky umělým systémům a schopnosti tyto systémy vizualizovat můžeme takové vlastnosti analyzovat. Tato práce se zaměřuje na studium dvou typů systémů: kagome a čtvercových dipolárních spinových systémů. Oba tyto systémy jsou výsledkem projekcí trojrozměrných pyrochlorových krystalů do roviny. Oba navíc vykazují poměrně neobvyklé chování, které je třeba teprve změřit v reálném prostoru ve velkých měřítcích. Dipolární kagome spinový systém má nízkoenergetickou fázi zvanou \textit{spinová kapalina 2}. Spiny v této fázi jsou usp<br />Two-dimensional artificial arrays of interacting nanomagnets are a powerful playground for probing the physics of the lattice spin models. Artificially designed spin systems were introduced to mimic the behaviour of the frustrated pyrochlore crystals. Recent improvement in nano-fabrication techniques allows us to fabricate any desired artificial system in the lab control environment. Therefore artificial simulators of the matter can be produced and used for more advanced study of the desired phenomenons. The advantage of using nanomagnetic objects as building blocks of artificial lattices is that small magnetic structures can effectively be considered giant classical Ising spins. Therefore elevating the problem of frustrated spins in pyrochlore crystals into such dimensions so the system can be studied with real space imaging techniques. With imaging techniques such as magnetic force microscopy, the ordering of each Ising macrospin can be visualised in real space, enabling us to look not only at the global property of the system as a whole but to see how local interactions are accommodated. Being able to fabricate artificial systems capturing the desired physics and comparing it to the real nature counterpart measures our understanding of the problem. It can also offer a missing piece of information. Furthermore, there are properties of the systems which are emergent and not encoded in the theoretical Hamiltonians describing the systems. Such properties seem to come out of nowhere, and with artificial systems and the ability to visualise these systems, we can analyse such properties. This thesis focus on studying two types of systems: kagome and square dipolar spin systems. Both these systems are the results of the projections of the three-dimensional pyrochlore crystals into a plane. Moreover, both systems exhibit rather unusual behaviour, which is still to be measured on a large scale in real space. The dipolar kagome spin system has a low energy phase called spin

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1426754874
Document Type :
Electronic Resource