Back to Search Start Over

AI supported fetal echocardiography with quality assessment

Authors :
Taksoee-Vester, Caroline A.
Mikolaj, Kamil
Bashir, Zahra
Christensen, Anders N.
Petersen, Olav B.
Sundberg, Karin
Feragen, Aasa
Svendsen, Morten B. S.
Nielsen, Mads
Tolsgaard, Martin G.
Taksoee-Vester, Caroline A.
Mikolaj, Kamil
Bashir, Zahra
Christensen, Anders N.
Petersen, Olav B.
Sundberg, Karin
Feragen, Aasa
Svendsen, Morten B. S.
Nielsen, Mads
Tolsgaard, Martin G.
Source :
Taksoee-Vester , C A , Mikolaj , K , Bashir , Z , Christensen , A N , Petersen , O B , Sundberg , K , Feragen , A , Svendsen , M B S , Nielsen , M & Tolsgaard , M G 2024 , ' AI supported fetal echocardiography with quality assessment ' , Scientific Reports , vol. 14 , 5809 .
Publication Year :
2024

Abstract

This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18-22-week anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and validation. The model's segmentation accuracy depended on image quality measured by a quality score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images having above-average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto-captured images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS showed better agreement on segmentations (p

Details

Database :
OAIster
Journal :
Taksoee-Vester , C A , Mikolaj , K , Bashir , Z , Christensen , A N , Petersen , O B , Sundberg , K , Feragen , A , Svendsen , M B S , Nielsen , M & Tolsgaard , M G 2024 , ' AI supported fetal echocardiography with quality assessment ' , Scientific Reports , vol. 14 , 5809 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1426751136
Document Type :
Electronic Resource