Back to Search Start Over

Rational Molecular Design Enables Efficient Blue TADF-OLEDs with Flexible Graphene Substrate

Authors :
Haciefendioglu, Tugba
Ozturk, Soner
Caylan, Omer
Sharif, Parisa
Alemdar, Eda
Buke, Goknur
Oral, Ahmet
Haciefendioglu, Tugba
Ozturk, Soner
Caylan, Omer
Sharif, Parisa
Alemdar, Eda
Buke, Goknur
Oral, Ahmet
Publication Year :
2022

Abstract

Observation of thermally activated delayed fluorescence (TADF) in conjugated systems redefined the molecular design approach to realize highly efficient organic light emitting diodes (OLEDs) in the early 2010s. Enabling effective reverse intersystem crossing (RISC) by minimizing the difference between singlet and triplet excited state energies (Delta E-ST) is proven to be a widely applicable and fruitful approach, which results in remarkable external quantum efficiencies (EQE). The efficacy of RISC in these systems is mainly dictated by the first-order mixing coefficient (lambda), which is proportional to spin-orbit coupling (H-SO) and inversely proportional to Delta E-ST. While minimizing Delta E-ST has been the focus of the OLED community over the last decade, the effect of H-SO in these systems is largely overlooked. Here, molecular systems with increased H-SO are designed and synthesized by substituting selected heteroatoms of high-performance TADF materials with heavy-atom selenium. A new series of multicolor TADF materials with remarkable EQEs are achieved. One of these materials, SeDF-B, results in pure blue emission with EQEs approaching 20%. Additionally, flexible graphene-based electrodes are developed for OLEDs and revealed to have similar performance as standard indium tin oxide (ITO) in most cases. These devices are the first report of TADF based OLEDs that utilize graphene-based anodes.<br />TUBITAK [115F604, 118C251]<br />P.S. and E.A. contributed equally to this work. This study was supported by TUBITAK under project no. 115F604. E. Y. gratefully acknowledged support from 2232 International Fellowship for Outstanding Researchers Program of TUBITAK (Project No: 118C251). The authors thank Mustafa Yasa for the help in the design of the figures.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1426269645
Document Type :
Electronic Resource