Back to Search
Start Over
Measurements of $\mu\mu$ pairs from open heavy flavor and Drell-Yan in $p+p$ collisions at $\sqrt{s}=200$ GeV
- Publication Year :
- 2018
-
Abstract
- PHENIX reports differential cross sections of $\mu\mu$ pairs from semileptonic heavy-flavor decays and the Drell-Yan production mechanism measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV at forward and backward rapidity ($1.2<|\eta|<2.2$). The $\mu\mu$ pairs from $c\bar{c}$, $b\bar{b}$, and Drell-Yan are separated using a template fit to unlike- and like-sign muon pair spectra in mass and $p_T$. The azimuthal opening angle correlation between the muons from $c\bar{c}$ and $b\bar{b}$ decays and the pair-$p_T$ distributions are compared to distributions generated using {\sc pythia} and {\sc powheg} models, which both include next-to-leading order processes. The measured distributions for pairs from $c\bar{c}$ are consistent with {\sc pythia} calculations. The $c\bar{c}$ data presents narrower azimuthal correlations and softer $p_T$ distributions compared to distributions generated from {\sc powheg}. The $b\bar{b}$ data are well described by both models. The extrapolated total cross section for bottom production is $3.75{\pm}0.24({\rm stat}){\pm}^{0.35}_{0.50}({\rm syst}){\pm}0.45({\rm global})$[$\mu$b], which is consistent with previous measurements at the Relativistic Heavy Ion Collider in the same system at the same collision energy, and is approximately a factor of two higher than the central value calculated with theoretical models. The measured Drell-Yan cross section is in good agreement with next-to-leading-order quantum-chromodynamics calculations.<br />Comment: 293 authors from 64 institutions, 42 pages, 36 figures, 13 tables. v2 is version accepted for publication in Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
Details
- Database :
- OAIster
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1425535375
- Document Type :
- Electronic Resource
- Full Text :
- https://doi.org/10.1103.PhysRevD.99.072003