Back to Search Start Over

Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life

Authors :
Erceg, Tamara
Erceg, Tamara
Šovljanski, Olja
Tomić, Ana
Aćimović, Milica
Stupar, Alena
Baloš, Sebastian
Erceg, Tamara
Erceg, Tamara
Šovljanski, Olja
Tomić, Ana
Aćimović, Milica
Stupar, Alena
Baloš, Sebastian
Source :
Polymers - Basel
Publication Year :
2024

Abstract

The development of active edible coatings with improved mechanical and barrier properties is a huge challenge. In this study, active edible coatings for sliced cheese have been developed using pullulan (Pull) in combination with two different biopolymers, chitosan (CS) and gelatine (Gel), and a combination of hydrolats as a source of active compounds with antimicrobial effects. In comparison to the monolayer coating, the bilayer coating system demonstrates improved barrier and mechanical properties. A preliminary assessment of the antimicrobial effect of lemongrass and curry plant hydrolats has revealed that both hydrolats exhibited antimicrobial activity against the targeted bacterium Staphylococcus aureus, albeit at different levels. The obtained results suggest that a mixture of 1.56% lemongrass and 12.5% curry plant hydrolats yielded a lower fractional inhibitory concentration (FIC) value. Bilayer coating systems (Pull/CS and Pull/Gel) with an incorporated mixture of hydrolats have demonstrated effectiveness in both cases: artificial contamination before application of the coating system and after application of the coating system. In both contamination scenarios, the coating systems consistently effectively limited bacterial proliferation, indicating the antimicrobial effect of the hydrolat mixture in the coating layers. In the case of artificial contamination before applying the coating system, both coatings demonstrated antimicrobial effectiveness, but the formulation with chitosan had a biocide effect, while the other, with gelatine, had only a bacteriostatic effect in a long-term setting. In the second case, both Pull/CS and Pull/Gel coatings demonstrated effectiveness in inhibiting bacterial growth regardless of the moment of contamination of the sample; the Pull/CS coating showed slightly better antimicrobial activity, achieving complete elimination of bacteria earlier compared with the Pull/Gel coating system.

Details

Database :
OAIster
Journal :
Polymers - Basel
Notes :
Polymers - Basel, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1423456819
Document Type :
Electronic Resource