Back to Search Start Over

Discrete breathers in a mechanical metamaterial

Authors :
Universidad de Sevilla. Departamento de Física Aplicada I
Universidad de Sevilla. FQM280: Física no Lineal
EU (FEDER Program No. 2014-2020) through both Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía Project No. P18-RT-3480
EU (FEDER Program No. 2014-2020) through both Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía Project No. US-1380977
MCIN/AEI/10.13039/501100011033 Project No. PID2019-110430GB-C21
MCIN/AEI/10.13039/501100011033 Project No. PID2020-112620GB-I00
Duran, Henry
Cuevas-Maraver, Jesús
Kevrekidis, Panayotis G.
Vainchtein, Anna
Universidad de Sevilla. Departamento de Física Aplicada I
Universidad de Sevilla. FQM280: Física no Lineal
EU (FEDER Program No. 2014-2020) through both Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía Project No. P18-RT-3480
EU (FEDER Program No. 2014-2020) through both Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía Project No. US-1380977
MCIN/AEI/10.13039/501100011033 Project No. PID2019-110430GB-C21
MCIN/AEI/10.13039/501100011033 Project No. PID2020-112620GB-I00
Duran, Henry
Cuevas-Maraver, Jesús
Kevrekidis, Panayotis G.
Vainchtein, Anna
Publication Year :
2023

Abstract

We consider a previously experimentally realized discrete model that describes a mechanical metamaterial consisting of a chain of pairs of rigid units connected by flexible hinges. Upon analyzing the linear band structure of the model, we identify parameter regimes in which this system may possess discrete breather solutions with frequencies inside the gap between optical and acoustic dispersion bands. We compute numerically exact solutions of this type for several different parameter regimes and investigate their properties and stability. Our findings demonstrate that upon appropriate parameter tuning within experimentally tractable ranges, the system exhibits a plethora of discrete breathers, with multiple branches of solutions that feature period-doubling and symmetry-breaking bifurcations, in addition to other mechanisms of stability change such as saddle-center and Hamiltonian Hopf bifurcations. The relevant stability analysis is corroborated by direct numerical computations examining the dynamical properties of the system and paving the way for potential further experimental exploration of this rich nonlinear dynamical lattice setting.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1423432994
Document Type :
Electronic Resource