Back to Search Start Over

Bio-based anode material production for lithium–ion batteries through catalytic graphitization of biochar : the deployment of hybrid catalysts

Authors :
Shi, Ziyi
Jin, Yanghao
Han, Tong
Yang, Hanmin
Gond, Ritambhara
Subasi, Yaprak
Asfaw, Habtom Desta
Younesi, Reza
Jönsson, Pär G.
Yang, Weihong
Shi, Ziyi
Jin, Yanghao
Han, Tong
Yang, Hanmin
Gond, Ritambhara
Subasi, Yaprak
Asfaw, Habtom Desta
Younesi, Reza
Jönsson, Pär G.
Yang, Weihong
Publication Year :
2024

Abstract

Producing sustainable anode materials for lithium-ion batteries (LIBs) through catalytic graphitization of renewable biomass has gained significant attention. However, the technology is in its early stages due to the bio-graphite's comparatively low electrochemical performance in LIBs. This study aims to develop a process for producing LIB anode materials using a hybrid catalyst to enhance battery performance, along with readily available market biochar as the raw material. Results indicate that a trimetallic hybrid catalyst (Ni, Fe, and Mn in a 1:1:1 ratio) is superior to single or bimetallic catalysts in converting biochar to bio-graphite. The bio-graphite produced under this catalyst exhibits an 89.28% degree of graphitization and a 73.95% conversion rate. High-resolution transmission electron microscopy (HRTEM) reveals the dissolution–precipitation mechanism involved in catalytic graphitization. Electrochemical performance evaluation showed that the trimetallic hybrid catalyst yielded bio-graphite with better electrochemical performances than those obtained through single or bimetallic hybrid catalysts, including a good reversible capacity of about 293 mAh g−1 at a current density of 20 mA/g and a stable cycle performance with a capacity retention of over 98% after 100 cycles. This study proves the synergistic efficacy of different metals in catalytic graphitization, impacting both graphite crystalline structure and electrochemical performance.

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1422607320
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1038.s41598-024-54509-8