Back to Search
Start Over
Primjena neuronskih mreža za procjenu koncentracije otopine ksilometazolin hidroklorida u n-butanolu primjenom ATR-FTIR spektroskopije in situ
- Source :
- Kemija u industriji : Časopis kemičara i kemijskih inženjera Hrvatske; ISSN 0022-9830 (Print); ISSN 1334-9090 (Online); Volume 72; Issue 11-12
- Publication Year :
- 2023
-
Abstract
- Procesna analitička tehnologija (PAT) sve se češće primjenjuje u procesu kristalizacije za kontinuirano praćenje neke od ključnih procesnih veličina i značajki kvalitete proizvoda. Vrlo bitne procesne varijable za kristalizaciju hlađenjem su temperatura i koncentracija otopine. Kontinuirano mjerenje koncentracije omogućeno je naprednim in situ spektroskopskim instrumentima. U takve metode spada i prigušena ukupna reflektancija Fourier transformacijske infracrvene spektroskopije (engl. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, ATR-FTIR), primijenjena u ovom istraživanju. U ovom radu razvijeni su kemometrijski modeli za kontinuiranu procjenu koncentracije otopine u stvarnom vremenu metodama strojnog učenja. Cilj ovog rada bio je razviti i ispitati modele parcijalne regresije metodom najmanjih kvadrata (engl. Partial Least Squares Regression, PLSR) i modele neuronskih mreža (engl. Neural Networks, NN) za modeliranje ovisnosti koncentracije djelatne tvari, ksilometazolin hidroklorid, u n-butanolu, o temperaturi i spektralnim podatcima dobivenim mjerenjima ATR-FTIR spektrometrom. U radu je provedena predobrada prikupljenih podataka tehnikom MSC (engl. Multiplicative Scatter Correction) te je provedeno skaliranje podataka prema normalizacijama Min-Max i Z-score. Analiziran je broj neurona u prvom i drugom skrivenom sloju, broj skrivenih slojeva, vrsta primijenjenog algoritma učenja (ADAM, NADAM, RMSprop) kao i utjecaj vrste prijenosne funkcije (ReLU, sigmoid, tanh) na kvalitetu razvijenih neuronskih mreža. Razvijeni modeli na sva četiri skupa podataka dali su iznimno dobre rezultate s obzirom na iznose koeficijenta determinacije i srednje kvadratne pogreške. Modelom neuronske mreže dobiveni su koeficijenti determinacije u rasponu vrijednosti od 0,9979 do 0,9989, dok je srednja kvadratna pogreška od 0,0020 do 0,0011. PLSR modelom dobiveni su koeficijenti determinacije od 0,9990 do 0,9995, odnosno srednja kvadratna pogreška od 0,0009 do 0,0005. D<br />Process analytical technology (PAT) is increasingly applied in the crystallization process for continuous monitoring of some of the key process parameters and product quality features. Very important process variables for cooling crystallization are the temperature and concentration of the mother liquor. Continuous measurement of concentration is made possible by advanced in situ spectroscopic instruments. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), used in this work belongs to such methods. The calibration model which estimates the concentration of the solution in real time can be developed using machine-learning methods. The aim of this work was to develop and analyse partial least squares regression (PLSR) and neural network models for modelling the dependence of the concentration of the active ingredients, xylometazoline hydrochloride in n-butanol, on temperature and spectral data obtained by measurements with an ATR-FTIR spectrometer. In this work, pre-processing of the collected data was performed with MSC technique (multiplicative scatter correction), Min-Max and Z-score normalization; the number of neurons in the first and second hidden layers, the number of hidden layers, the type of learning algorithm applied (ADAM, NADAM, RMSprop), and the influence of the type of transfer function (ReLU, sigmoid, tanh) on the quality of the developed neural networks were analysed. Considering values of coefficient of determination and mean square error, developed models gave very good results on all four datasets. The neural network model gave coefficients of determination in the range of values from 0.9979 to 0.9989, and the mean square error from 0.0020 to 0.0011. With the PLSR model, coefficients of determination from 0.9990 to 0.9995, and mean square errors from 0.0009 to 0.0005, were obtained. Obtained results showed that the pre-processing of the data and the addition of a second hidden layer of the neural network in this study
Details
- Database :
- OAIster
- Journal :
- Kemija u industriji : Časopis kemičara i kemijskih inženjera Hrvatske; ISSN 0022-9830 (Print); ISSN 1334-9090 (Online); Volume 72; Issue 11-12
- Notes :
- application/pdf, Croatian
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1420026524
- Document Type :
- Electronic Resource