Back to Search Start Over

Highly hydrophobic cellulose acetate mats modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer and TiO2 nanoparticles by electrospinning

Authors :
Ingeniería química y del medio ambiente
Ingeniaritza kimikoa eta ingurumenaren ingeniaritza
Gómez Hermoso de Mendoza, Joseba
Gutiérrez Cáceres, Juncal
Tercjak Sliwinska, Agnieszka
Ingeniería química y del medio ambiente
Ingeniaritza kimikoa eta ingurumenaren ingeniaritza
Gómez Hermoso de Mendoza, Joseba
Gutiérrez Cáceres, Juncal
Tercjak Sliwinska, Agnieszka
Publication Year :
2023

Abstract

Cellulose acetate (CA) mats modified with poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO or EPE) and sol–gel synthesised titanium oxide (TiO2) nanoparticles were successfully fabricated by using electrospinning technique. Under the same preparation conditions, higher spinnability was achieved for EPE triblock copolymers modified mats. All fabricated mats showed a micrometric multilayer structure, which enabled layer-by-layer peeling. The addition of TiO2 nanoparticles facilitated the peeling process. The diameter of the fibres was ~ 3 times lower after the incorporation of sol–gel synthesised TiO2 nanoparticles. TEM images confirmed that under electrospinning conditions the PPO block domains were able to microphase separated from the PEO block/CA phase. Additionally, the introduction of sol–gel synthesised TiO2 nanoparticles led to an inorganic network formation with nanoparticle size equal to ~ 8 nm in diameter. Moreover, the addition of TiO2 nanoparticles increased the hydrophobicity of the mats and their self-cleaning ability, being more effective for TiO2/CA than for TiO2-EPE/CA due to the partial absorption of water by EPE triblock copolymer. Young’s modulus of fabricated mats improved drastically with the addition of TiO2 nanoparticles, as well as their physical integrity in polar and nonpolar solvents. Fabricated mats with enhanced spinnability, which maintain CA mat features as well as the properties associated with sol–gel synthesised TiO2 nanoparticles, can find a wide range of applications.

Details

Database :
OAIster
Notes :
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was founded by Spanish Ministry of Science, Innovation and Universities and European Union (MICINN/FEDER and UE) in the frame of PGC2018-097699-B-I00 and PID2021-126417NB-I00 projects, and by Basque Government in frame of PIBA19-0044. J.G.-H.-de-M. thanks Basque Government for PhD Fellowship (PRE_2021_2_0044)., English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1418067531
Document Type :
Electronic Resource