Back to Search Start Over

Multi-Agent Path Integral Control for Interaction-Aware Motion Planning in Urban Canals

Authors :
Streichenberg, L.M. (author)
Trevisan, E. (author)
Chung, Jen Jen (author)
Siegwart, R. (author)
Alonso-Mora, J. (author)
Streichenberg, L.M. (author)
Trevisan, E. (author)
Chung, Jen Jen (author)
Siegwart, R. (author)
Alonso-Mora, J. (author)
Publication Year :
2023

Abstract

Autonomous vehicles that operate in urban environments shall comply with existing rules and reason about the interactions with other decision-making agents. In this paper, we introduce a decentralized and communication-free interaction-aware motion planner and apply it to Autonomous Surface Vessels (ASVs) in urban canals. We build upon a sampling-based method, namely Model Predictive Path Integral control (MPPI), and employ it to, in each time instance, compute both a collision-free trajectory for the vehicle and a prediction of other agents' trajectories, thus modeling interactions. To improve the method's efficiency in multi-agent scenarios, we introduce a two-stage sample evaluation strategy and define an appropriate cost function to achieve rule compliance. We evaluate this decentralized approach in simulations with multiple vessels in real scenarios extracted from Amsterdam's canals, showing superior performance than a state-of-the-art trajectory optimization framework and robustness when encountering different types of agents.<br />Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.<br />Learning & Autonomous Control

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1416846567
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1109.ICRA48891.2023.10161511