Back to Search
Start Over
Bacteria that escape predation : waterborne pathogens and their relatives
- Publication Year :
- 2023
-
Abstract
- The hidden presence of opportunistic bacterial pathogens in the environment evokes concerns about emerging diseases, especially in the light of climate change. The co-evolution of bacteria and their predators (protozoa) has led to bacterial defence strategies of which some contribute to the ability of bacteria to cause disease. To increase our understanding of the interplay between bacteria, protozoa, land use, and climate scenarios in Nordic brackish and freshwater, four studies were designed. The first study explored the co-occurrence patterns between predation resistant bacteria (PRB) and bacterivorous protozoa in a coastal area in the northern Baltic Sea. The results showed higher PRB diversity in the bays and freshwater inlets, than in the offshore waters. Further, genotype specific interactions between protozoa and bacteria were identified. The second study focused on Legionella species diversity and their association with humic substances and low salinity, potentially facilitated through the promotion of the heterotrophic microbial food web or by iron availability. The third study examined the impact of intensified land use on bacterial taxa abundance and community composition in lake inflows, demonstrating indirect downstream effects on water quality. Factors such as pastures, fields, farms, aluminium, iron, and humic substances were linked to increased Legionella abundance. The fourth study exposed aquatic organisms to climate change scenarios, causing eutrophication or brownification with elevated iron levels. Pseudomonas aeruginosa were found to be especially persistent to iron, likely linked to the same mechanism that enables survival in protozoan cells. This trait was shared with other observed intracellular pathogens and uncultured species, who showed elevated resilience to brownification and ability to survive outside host cells. These findings identified complex relationships, which improve our understanding of the intricate dynamics that shape aquat
Details
- Database :
- OAIster
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1416069980
- Document Type :
- Electronic Resource