Back to Search Start Over

Electron Heating and Acceleration at Earth’s Collisionless Bow Shock

Authors :
Lindberg, Martin
Lindberg, Martin
Publication Year :
2024

Abstract

Cosmic rays are ultra-relativistic particles traveling near the speed of light permeating the galaxy. Collisionless shock waves with their ubiquity throughout the universe and excellent capability of accelerating charged particles offer an explanation to the origin of cosmic rays. It is well established that the particles are predominately accelerated at young supernova remnant shocks through a mechanism called Diffusive Shock Acceleration (DSA). However, this theory only applies if the particles already have a relativistic starting energy. Therefore, the charged particles must be pre-accelerated up to relativistic energies by some unknown mechanism(s) before being injected into the cosmic ray acceleration process. This is known as the injection problem and a lot of effort has been put into resolving it over the past decades. This thesis will use spacecraft data from NASA's Magnetospheric Multiscale (MMS) mission to study electron acceleration at Earth's collisionless bow shock. In particular, we will study what mechanisms are able to accelerate electrons from solar wind thermal energies (~20 eV) up to mildly relativistic energies 10-100 keV. Paper III and Paper IV set out to study energetic electron events observed at Earth's bow shock by MMS. In Paper III, we investigate the most promising candidate for a solution to the long-standing electron injection problem, the Stochastic Shock Drift Acceleration (SSDA) mechanism. SSDA successfully describes a mechanism for electrons to be accelerated up to mildly relativistic energies. However, only one previous observation of the theory exists. Building on that study, we provide further evidence in favor of the theory by showing good agreement between predictions and observations. Observational evidence of an alternative electron acceleration mechanism is presented in Paper IV. The observation displays an increase in electron flux up to ~60 keV, and inconsistent features with the SSDA mechanism. The event exhibits bi-direct<br />QC 20231222

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1416069563
Document Type :
Electronic Resource