Back to Search Start Over

Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344T

Authors :
(0000-0001-7906-6851) Hilpmann, S.
Roßberg, A.
(0000-0002-3103-9587) Steudtner, R.
(0000-0003-1245-0466) Drobot, B.
(0000-0002-5200-6928) Hübner, R.
(0000-0002-6885-2619) Bok, F.
(0000-0001-5087-0133) Prieur, D.
(0000-0001-5484-8857) Bauters, S.
(0000-0003-4447-4542) Kvashnina, K.
(0000-0002-4505-3865) Stumpf, T.
(0000-0002-3908-2539) Cherkouk, A.
(0000-0001-7906-6851) Hilpmann, S.
Roßberg, A.
(0000-0002-3103-9587) Steudtner, R.
(0000-0003-1245-0466) Drobot, B.
(0000-0002-5200-6928) Hübner, R.
(0000-0002-6885-2619) Bok, F.
(0000-0001-5087-0133) Prieur, D.
(0000-0001-5484-8857) Bauters, S.
(0000-0003-4447-4542) Kvashnina, K.
(0000-0002-4505-3865) Stumpf, T.
(0000-0002-3908-2539) Cherkouk, A.
Source :
Science of the Total Environment 875(2023), 162593
Publication Year :
2023

Abstract

Microbial U(VI) reduction influences the uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transform-ing the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigat-ed. D. hippei DSM 8344T showed a relatively fast removal of uranium from the superna-tants in artificial Opalinus Clay pore water. Combined speciation calculations and lumi-nescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with ener-gy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and the formation of membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorp-tion near-edge structure (XANES) recorded in high-energy-resolution fluorescence-detection (HERFD) mode and extended X-ray absorption fine structure (EXAFS) analy-sis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process, suggesting a single-electron transfer mechanism for the microbial U(VI) reduction by sulfate reducers. These findings offer new insights into the U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.

Details

Database :
OAIster
Journal :
Science of the Total Environment 875(2023), 162593
Notes :
application/pdf, application/vnd.openxmlformats-officedocument.wordprocessingml.document, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1415627432
Document Type :
Electronic Resource