Back to Search Start Over

Spectral shaping of laser generated proton beams

Authors :
Pfotenhauer, S. M.
Jäckel, O.
Sachtleben, A.
Polz, J.
Ziegler, W.
Schlenvoigt, H.-P.
Amthor, K.-U.
Kaluza, M. C.
Ledingham, K. W. D.
Sauerbrey, R.
Gibbon, P.
Robinson, A. P. L.
Schwoerer, H.
Pfotenhauer, S. M.
Jäckel, O.
Sachtleben, A.
Polz, J.
Ziegler, W.
Schlenvoigt, H.-P.
Amthor, K.-U.
Kaluza, M. C.
Ledingham, K. W. D.
Sauerbrey, R.
Gibbon, P.
Robinson, A. P. L.
Schwoerer, H.
Source :
New Journal of Physics 10(2008), 033034
Publication Year :
2008

Abstract

The rapid progress in the field of laser particle acceleration has stimulated a debate about the promising perspectives of laser based ion beam sources. For a long time, the beams produced exhibited quasi-thermal spectra. Recent proof-of-principle experiments demonstrated that ion beams with narrow energy distribution can be generated from special target geometries. However, the achieved spectra were strongly limited in terms of monochromacity and reproducibility. We show that microstructured targets can be used to reliably produce protons with monoenergetic spectra above 2 MeV with less than 10% energy spread. Detailed investigations of the effects of laser ablation on the target resulted in a significant improvement of the reproducibility. Based on statistical analysis, we derive a scaling law between proton peak position and laser energy, underlining the suitability of this method for future applications. Both the quality of the spectra and the scaling law are well reproduced by numerical simulations.

Details

Database :
OAIster
Journal :
New Journal of Physics 10(2008), 033034
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1415620455
Document Type :
Electronic Resource