Back to Search Start Over

Adding CUDA® Support to Cling: JIT Compile to GPUs

Authors :
(0000-0002-8218-3116) Ehrig, S.
(0000-0003-1943-7141) Hübl, A.
(0000-0002-4725-0766) Naumann, A.
Vassilev, V.
(0000-0002-8218-3116) Ehrig, S.
(0000-0003-1943-7141) Hübl, A.
(0000-0002-4725-0766) Naumann, A.
Vassilev, V.
Source :
2020 Virtual LLVM Developers' Meeting, 06.-08.10.2020, Virtuell, USA
Publication Year :
2020

Abstract

Jupyter Notebooks are omnipresent in the modern scientist's and engineer's toolbox just as CUDA C++ is in accelerated computing. We present the first implementation of a CUDA C++ enabled read-eval-print-loop (REPL) that allows to interactively "script" the popular CUDA C++ runtime syntax in Notebooks. With our novel implementation, based on LLVM, Clang and CERN's C++ interpreter Cling, the modern CUDA C++ developer can work as interactively and productively as (I)Python developers while keeping all the benefits of the vast C++ computing and library ecosystem coupled with first-class performance.

Details

Database :
OAIster
Journal :
2020 Virtual LLVM Developers' Meeting, 06.-08.10.2020, Virtuell, USA
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1415608311
Document Type :
Electronic Resource