Back to Search Start Over

Knowledge extraction in Laser-plasma simulations -- A case study on why start-to-end simulations are just the beginning

Authors :
(0000-0002-3844-3697) Debus, A.
(0000-0001-7990-9564) Pausch, R.
(0000-0001-9759-1166) Köhler, A.
(0000-0002-2769-4749) Schöbel, S.
(0000-0001-9129-4208) Couperus Cabadağ, J. P.
(0000-0002-4626-0049) Irman, A.
(0000-0003-0390-7671) Schramm, U.
(0000-0002-8258-3881) Bussmann, M.
(0000-0002-3844-3697) Debus, A.
(0000-0001-7990-9564) Pausch, R.
(0000-0001-9759-1166) Köhler, A.
(0000-0002-2769-4749) Schöbel, S.
(0000-0001-9129-4208) Couperus Cabadağ, J. P.
(0000-0002-4626-0049) Irman, A.
(0000-0003-0390-7671) Schramm, U.
(0000-0002-8258-3881) Bussmann, M.
Source :
DMA-ST3 Meeting 2021, 18.5.2021, Virtuell, Deutschland
Publication Year :
2021

Abstract

Based on a recent laser-wakefield acceleratror experiment studying the electron beam dynamics during acceleration using betatron radiation diagnostics, we present the knowledge-extraction challenges in modeling recent experiments with particle-in-cell simulations such as PIConGPU. Lessons learnt: * Matching experiment and simulation results via start-to-end simulations is essential, but not the end. It is the beginning for knowledge extraction to gain physics understanding. * In-situ diagnostics toolkit needs to be flexible enough to minimize post-processing. * Reduced models help distinguishing, understanding and excluding different physics processes. * Particularly intermediate simulation states, such as particle distributions after ionization injection, need to be filterable and interfacable to other codes (--> openPMD). * Outlook: Next generation of simulations requires more than one order more data. In-situ diagnostics and machine-learning methods need to be further extended.

Details

Database :
OAIster
Journal :
DMA-ST3 Meeting 2021, 18.5.2021, Virtuell, Deutschland
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1415598760
Document Type :
Electronic Resource