Back to Search
Start Over
QPOLE:A Quick, Simple, and Cheap Alternative for POLE Sequencing in Endometrial Cancer by Multiplex Genotyping Quantitative Polymerase Chain Reaction
- Source :
- Van den Heerik , A S V M , Ter Haar , N T , Vermij , L , Jobsen , J J , Brinkhuis , M , Roothaan , S M , Leon-Castillo , A , Ortoft , G , Hogdall , E , Hogdall , C , Van Wezel , T , Lutgens , L C H W , Haverkort , M A D , Khattra , J , McAlpine , J N , Creutzberg , C L , Smit , V T H B M , Gilks , C B , Horeweg , N & Bosse , T 2023 , ' QPOLE : A Quick, Simple, and Cheap Alternative for POLE Sequencing in Endometrial Cancer by Multiplex Genotyping Quantitative Polymerase Chain Reaction ' , JCO Global Oncology , vol. 9 , e2200384 .
- Publication Year :
- 2023
-
Abstract
- PURPOSE: Detection of 11 pathogenic variants in the POLE gene in endometrial cancer (EC) is critically important to identify women with a good prognosis and reduce overtreatment. Currently, POLE status is determined by DNA sequencing, which can be expensive, relatively time-consuming, and unavailable in hospitals without specialized equipment and personnel. This may hamper the implementation of POLE-testing in clinical practice. To overcome this, we developed and validated a rapid, low-cost POLE hotspot test by a quantitative polymerase chain reaction (qPCR) assay, QPOLE. MATERIALS AND METHODS: Primer and fluorescence-labeled 5'-nuclease probe sequences of the 11 established pathogenic POLE mutations were designed. Three assays, QPOLE-frequent for the most common mutations and QPOLE-rare-1 and QPOLE-rare-2 for the rare variants, were developed and optimized using DNA extracted from formalin-fixed paraffin-embedded tumor tissues. The simplicity of the design enables POLE status assessment within 4-6 hours after DNA isolation. An interlaboratory external validation study was performed to determine the practical feasibility of this assay. RESULTS: Cutoffs for POLE wild-type, POLE-mutant, equivocal, and failed results were predefined on the basis of a subset of POLE mutants and POLE wild-types for the internal and external validation. For equivocal cases, additional DNA sequencing is recommended. Performance in 282 EC cases, of which 99 were POLE-mutated, demonstrated an overall accuracy of 98.6% (95% CI, 97.2 to 99.9), a sensitivity of 95.2% (95% CI, 90.7 to 99.8), and a specificity of 100%. After DNA sequencing of 8.8% equivocal cases, the final sensitivity and specificity were 96.0% (95% CI, 92.1 to 99.8) and 100%. External validation confirmed feasibility and accuracy. CONCLUSION: QPOLE is a qPCR assay that is a quick, simple, and reliable alternative for DNA sequencing. QPOLE detects all pathogenic variants in the exonuclease domain of the POLE gene. QPOLE will
Details
- Database :
- OAIster
- Journal :
- Van den Heerik , A S V M , Ter Haar , N T , Vermij , L , Jobsen , J J , Brinkhuis , M , Roothaan , S M , Leon-Castillo , A , Ortoft , G , Hogdall , E , Hogdall , C , Van Wezel , T , Lutgens , L C H W , Haverkort , M A D , Khattra , J , McAlpine , J N , Creutzberg , C L , Smit , V T H B M , Gilks , C B , Horeweg , N & Bosse , T 2023 , ' QPOLE : A Quick, Simple, and Cheap Alternative for POLE Sequencing in Endometrial Cancer by Multiplex Genotyping Quantitative Polymerase Chain Reaction ' , JCO Global Oncology , vol. 9 , e2200384 .
- Notes :
- application/pdf, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1414368844
- Document Type :
- Electronic Resource