Back to Search Start Over

A canonical form for Projected Entangled Pair States and applications

Authors :
Sanz, Mikel
Pérez García, David
Cirac, Juan I.
Wolf, Michael
González Guillén, Carlos Eduardo
Sanz, Mikel
Pérez García, David
Cirac, Juan I.
Wolf, Michael
González Guillén, Carlos Eduardo
Publication Year :
2023

Abstract

We show that two different tensors defining the same translational invariant injective Projected Entangled Pair State (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.<br />Unión Europea. FP7<br />Depto. de Análisis Matemático y Matemática Aplicada<br />Fac. de Ciencias Matemáticas<br />TRUE<br />pub

Details

Database :
OAIster
Notes :
application/pdf, 1367-2630, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1413950131
Document Type :
Electronic Resource