Back to Search
Start Over
Moduli space of principal sheaves over projective varieties
- Publication Year :
- 2023
-
Abstract
- Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan's notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a projective variety X is a triple (P, E, psi), where E is a torsion free sheaf on X, P is a principal G-bundle on the open set U where E is locally free and psi is an isomorphism between E vertical bar(U) and the vector bundle associated to P by the adjoint representation.<br />Depto. de Álgebra, Geometría y Topología<br />Fac. de Ciencias Matemáticas<br />TRUE<br />pub
Details
- Database :
- OAIster
- Notes :
- application/pdf, 0003-486X, English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1413949219
- Document Type :
- Electronic Resource