Back to Search Start Over

Lipid, Aqueous and Mucin Tear Film Layer Stability and Permanence within 0.15% Liposome Crosslinked Hyaluronic Acid versus 0.15% Non-Crosslinked Hyaluronic Acid Measured with a Novel Non-Invasive Ocular Surface Analyzer

Authors :
Universidad de Sevilla. Departamento de Física de la Materia Condensada
Sánchez González, José María
Hita Cantalejo, María Concepción de
Martínez Lara, Concepción
Sánchez González, María del Carmen
Universidad de Sevilla. Departamento de Física de la Materia Condensada
Sánchez González, José María
Hita Cantalejo, María Concepción de
Martínez Lara, Concepción
Sánchez González, María del Carmen
Publication Year :
2022

Abstract

To evaluate the stability and permanence of the liquid film created after the instillation of 0.15% crosslinked hyaluronic acid with liposomes and crocin versus the effect of 0.15% standard hyaluronic acid, a prospective, longitudinal, single-blind, single-center study was conducted in symptomatic populations with a novel noninvasive ocular surface analyzer. Limbal and bulbar redness classification, lipid layer thickness, tear meniscus height, and first and mean noninvasive break-up time (FNIBUT and MNIBUT) were performed before and 30 and 45 min after liposome-crosslinked hyaluronic acid (LCHA) and standard hyaluronic acid (HA) eye drop instillations. LCHA had a higher lipid layer thickness than HA (grades 2.00 ± 0.83 and 1.17 ± 0.63 on the Guillon pattern, respectively). LCHA achieved a better tear meniscus height than HA (0.23 ± 0.02 and 0.21 ± 0.02 mm, respectively). LCHA improved FNIBUT and MNIBUT more than HA (for FNIBUT, 6.30 ± 0.94 and 4.77 ± 0.89 s, respectively. For MNIBUT, 17.23 ± 5.11 and 12.41 ± 4.18 s, respectively). Crosslinking hyaluronic acid with liposomes and crocin significantly increases the permanence and stability of the lipid, aqueous, and mucin tear film layers. In a short-term period, liposome and crosslinked hyaluronic acid achieved better first and mean noninvasive break-up times than standard hyaluronic acid.

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1410795905
Document Type :
Electronic Resource