Back to Search Start Over

Effect of stacking fault energy on the thickness and density of annealing twins in recrystallized FCC medium and high-entropy alloys

Authors :
Schneider, Mike (author)
Couzinié, Jean Philippe (author)
Shalabi, Amin (author)
Ibrahimkhel, Farhad (author)
Ferrari, A. (author)
Körmann, F.H.W. (author)
Laplanche, Guillaume (author)
Schneider, Mike (author)
Couzinié, Jean Philippe (author)
Shalabi, Amin (author)
Ibrahimkhel, Farhad (author)
Ferrari, A. (author)
Körmann, F.H.W. (author)
Laplanche, Guillaume (author)
Publication Year :
2024

Abstract

This work aims to predict the microstructure of recrystallized medium and high-entropy alloys (MEAs and HEAs) with a face-centered cubic structure, in particular the density of annealing twins and their thickness. Eight MEAs and five HEAs from the Cr-Mn-Fe-Co-Ni system are considered, which have been cast, homogenized, cold-worked and recrystallized to obtain different grain sizes. This work thus provides a database that could be used for data mining to take twin boundary engineering for alloy development to the next level. Since the stacking fault energy is known to strongly affect recrystallized microstructures, the latter was determined at 293 K using the weak beam dark-field technique and compared with ab initio simulations, which additionally allowed to calculate its temperature dependence. Finally, we show that all these data can be rationalized based on theories and empirical relationships that were proposed for pure metals and binary Cu-based alloys.<br />Team Marcel Sluiter

Details

Database :
OAIster
Notes :
English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1410102128
Document Type :
Electronic Resource
Full Text :
https://doi.org/10.1016.j.scriptamat.2023.115844