Back to Search Start Over

A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM):a multi-cohort machine learning study

Authors :
Jackson, Heather R.
Zandstra, Judith
Menikou, Stephanie
Hamilton, Melissa Shea
McArdle, Andrew J.
Fischer, Roman
Thorne, Adam M.
Huang, Honglei
Tanck, Michael W.
Jansen, Machiel H.
De, Tisham
Agyeman, Philipp K.A.
Von Both, Ulrich
Carrol, Enitan D.
Emonts, Marieke
Eleftheriou, Irini
Van der Flier, Michiel
Fink, Colin
Gloerich, Jolein
De Groot, Ronald
Moll, Henriette A.
Pokorn, Marko
Pollard, Andrew J.
Schlapbach, Luregn J.
Tsolia, Maria N.
Usuf, Effua
Wright, Victoria J.
Yeung, Shunmay
Zavadska, Dace
Zenz, Werner
Coin, Lachlan J.M.
Casals-Pascual, Climent
Cunnington, Aubrey J.
Martinon-Torres, Federico
Herberg, Jethro A.
de Jonge, Marien I.
Levin, Michael
Kuijpers, Taco W.
Kaforou, Myrsini
Jackson, Heather R.
Zandstra, Judith
Menikou, Stephanie
Hamilton, Melissa Shea
McArdle, Andrew J.
Fischer, Roman
Thorne, Adam M.
Huang, Honglei
Tanck, Michael W.
Jansen, Machiel H.
De, Tisham
Agyeman, Philipp K.A.
Von Both, Ulrich
Carrol, Enitan D.
Emonts, Marieke
Eleftheriou, Irini
Van der Flier, Michiel
Fink, Colin
Gloerich, Jolein
De Groot, Ronald
Moll, Henriette A.
Pokorn, Marko
Pollard, Andrew J.
Schlapbach, Luregn J.
Tsolia, Maria N.
Usuf, Effua
Wright, Victoria J.
Yeung, Shunmay
Zavadska, Dace
Zenz, Werner
Coin, Lachlan J.M.
Casals-Pascual, Climent
Cunnington, Aubrey J.
Martinon-Torres, Federico
Herberg, Jethro A.
de Jonge, Marien I.
Levin, Michael
Kuijpers, Taco W.
Kaforou, Myrsini
Source :
Jackson , H R , Zandstra , J , Menikou , S , Hamilton , M S , McArdle , A J , Fischer , R , Thorne , A M , Huang , H , Tanck , M W , Jansen , M H , De , T , Agyeman , P K A , Von Both , U , Carrol , E D , Emonts , M , Eleftheriou , I , Van der Flier , M , Fink , C , Gloerich , J , De Groot , R , Moll , H A , Pokorn , M , Pollard , A J , Schlapbach , L J , Tsolia , M N , Usuf , E , Wright , V J , Yeung , S , Zavadska , D , Zenz , W , Coin , L J M , Casals-Pascual , C , Cunnington , A J , Martinon-Torres , F , Herberg , J A , de Jonge , M I , Levin , M , The PERFORM consortium (Personalized Risk assessment in febrile children to optimize Real-life Management across the European Union) , Kuijpers , T W & Kaforou , M 2023 , ' A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM) : a multi-cohort machine learning study ' , The Lancet. Digital health , vol. 5 , no. 11 , pp. e774-e785 .
Publication Year :
2023

Abstract

BACKGROUND: Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS: In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS:376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma sample

Details

Database :
OAIster
Journal :
Jackson , H R , Zandstra , J , Menikou , S , Hamilton , M S , McArdle , A J , Fischer , R , Thorne , A M , Huang , H , Tanck , M W , Jansen , M H , De , T , Agyeman , P K A , Von Both , U , Carrol , E D , Emonts , M , Eleftheriou , I , Van der Flier , M , Fink , C , Gloerich , J , De Groot , R , Moll , H A , Pokorn , M , Pollard , A J , Schlapbach , L J , Tsolia , M N , Usuf , E , Wright , V J , Yeung , S , Zavadska , D , Zenz , W , Coin , L J M , Casals-Pascual , C , Cunnington , A J , Martinon-Torres , F , Herberg , J A , de Jonge , M I , Levin , M , The PERFORM consortium (Personalized Risk assessment in febrile children to optimize Real-life Management across the European Union) , Kuijpers , T W & Kaforou , M 2023 , ' A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM) : a multi-cohort machine learning study ' , The Lancet. Digital health , vol. 5 , no. 11 , pp. e774-e785 .
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1410090087
Document Type :
Electronic Resource