Back to Search Start Over

Mechanical properties of smart polypropylene meshes: effects of mesh architecture, plasma treatment, thermosensitive coating, and sterilization process

Authors :
Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
Lanzalaco, Sonia
Weis, Christine
Traeger, Kamelia
Turon, Pau
Alemán Llansó, Carlos
Armelín Diggroc, Elaine Aparecida
Universitat Politècnica de Catalunya. Departament d'Enginyeria Química
Universitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
Lanzalaco, Sonia
Weis, Christine
Traeger, Kamelia
Turon, Pau
Alemán Llansó, Carlos
Armelín Diggroc, Elaine Aparecida
Publication Year :
2023

Abstract

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(N-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures. In this work, the mechanical performance of plasma-treated and hydrogel-grafted meshes preheated at 37 °C has been compared with standard meshes using bursting and the suture pull out tests. Furthermore, the influence of the mesh architecture, the amount of grafted hydrogel, and the sterilization process on such properties have been examined. Results reveal that although the plasma treatment reduces the bursting and suture pull out forces, the thermosensitive hydrogel improves the mechanical resistance of the meshes. Moreover, the mechanical performance of the meshes coated with the PNIPAAm hydrogel is not influenced by ethylene oxide gas sterilization. Micrographs of the broken meshes evidence the role of the hydrogel as reinforcing coating for the PP filaments. Overall, results confirm that the modification of PP medical textiles with a biocompatible thermosensitive hydrogel do not affect, and even improve, the mechanical requirements necessary for the implantation of these prostheses in vivo.<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
13 p., application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1409475677
Document Type :
Electronic Resource