Back to Search Start Over

On the spectra of token graphs of cycles and other graphs

Authors :
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. OMGRAPH - Optimisation Methods on Graphs
Reyes Quiróz, Mónica
Dalfó Simó, Cristina
Fiol Mora, Miquel Àngel
Messegué Buisan, Arnau
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació
Universitat Politècnica de Catalunya. OMGRAPH - Optimisation Methods on Graphs
Reyes Quiróz, Mónica
Dalfó Simó, Cristina
Fiol Mora, Miquel Àngel
Messegué Buisan, Arnau
Publication Year :
2023

Abstract

© 2023 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0<br />The k-token graph of a graph G is the graph whose vertices are the k-subsets of vertices from G, two of which being adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is a known result that the algebraic connectivity (or second Laplacian eigenvalue) of equals the algebraic connectivity of G. In this paper, we first give results that relate the algebraic connectivities of a token graph and the same graph after removing a vertex. Then, we prove the result on the algebraic connectivity of 2-token graphs for two infinite families: the odd graphs for all r, and the multipartite complete graphs for all In the case of cycles, we present a new method that allows us to compute the whole spectrum of . This method also allows us to obtain closed formulas that give asymptotically exact approximations for most of the eigenvalues of .<br />Peer Reviewed<br />Postprint (author's final draft)

Details

Database :
OAIster
Notes :
application/pdf, English
Publication Type :
Electronic Resource
Accession number :
edsoai.on1409475403
Document Type :
Electronic Resource